摘要:
Techniques for estimating thermal noise and rise-over-thermal (RoT) in a communication system are described. Thermal noise in a sideband may be measured and used as an estimate of thermal noise in a signal band. In one design, samples containing a desired signal centered at DC or a frequency higher than DC may be partitioned into blocks of K samples. Each block of K samples may be transformed with an FFT to obtain a corresponding block of K transform coefficients for K frequency bins. The power of transform coefficients for frequency bins in the sideband may be computed. Thermal noise may be estimated based on power values for the frequency bins in the sideband. Power values for frequency bins in the signal band may also be obtained and used to estimate total received power. RoT may then be estimated based on the estimated thermal noise and the estimated total received power.
摘要:
Techniques for estimating thermal noise and rise-over-thermal (RoT) in a communication system are described. Thermal noise in a sideband may be measured and used as an estimate of thermal noise in a signal band. In one design, samples containing a desired signal centered at DC or a frequency higher than DC may be partitioned into blocks of K samples. Each block of K samples may be transformed with an FFT to obtain a corresponding block of K transform coefficients for K frequency bins. The power of transform coefficients for frequency bins in the sideband may be computed. Thermal noise may be estimated based on power values for the frequency bins in the sideband. Power values for frequency bins in the signal band may also be obtained and used to estimate total received power. RoT may then be estimated based on the estimated thermal noise and the estimated total received power.
摘要:
Techniques for estimating thermal noise and rise-over-thermal (RoT) in a communication system are described. In an aspect, thermal noise in a sideband may be measured and used to estimate thermal noise in a signal band. In one design, received power in the sideband may be measured, e.g., by computing total power of FFT transform coefficients within the sideband. Thermal noise may be estimated based on (e.g., by filtering) the measured received power in the sideband. Received power in the signal band may also be measured. Total received power may be estimated based on (e.g., by filtering) the measured received power in the signal band. RoT may then be estimated based on the estimated thermal noise and the estimated total received power. The estimated RoT may be used to estimate an available load for a cell, which may be used to admit and/or schedule users in the cell.
摘要:
Techniques for estimating thermal noise and rise-over-thermal (RoT) in a communication system are described. In an aspect, thermal noise in a sideband may be measured and used to estimate thermal noise in a signal band. In one design, received power in the sideband may be measured, e.g., by computing total power of FFT transform coefficients within the sideband. Thermal noise may be estimated based on (e.g., by filtering) the measured received power in the sideband. Received power in the signal band may also be measured. Total received power may be estimated based on (e.g., by filtering) the measured received power in the signal band. RoT may then be estimated based on the estimated thermal noise and the estimated total received power. The estimated RoT may be used to estimate an available load for a cell, which may be used to admit and/or schedule users in the cell.
摘要:
Techniques for reporting acknowledgement (ACK) information and channel quality indication (CQI) information in a wireless communication system are described. A user equipment (UE) may be able to receive data from up to two cells with dual-cell operation. The UE may determine CQI information for a first cell, determine CQI information for a second cell, and send the CQI information for both cells on a feedback channel with a single channelization code. The UE may process a control channel from each cell and, if control information is received from the cell, may further process a data channel from the cell to receive data sent to the UE. The UE may determine ACK information for each cell based on processing results for the data and control channels from that cell. The UE may send the ACK information for both cells on the feedback channel with the single channelization code.
摘要:
Techniques for reporting acknowledgement (ACK) information and channel quality indication (CQI) information in a wireless communication system are described. A user equipment (UE) may be able to receive data from up to two cells with dual-cell operation. The UE may determine CQI information for a first cell, determine CQI information for a second cell, and send the CQI information for both cells on a feedback channel with a single channelization code. The UE may process a control channel from each cell and, if control information is received from the cell, may further process a data channel from the cell to receive data sent to the UE. The UE may determine ACK information for each cell based on processing results for the data and control channels from that cell. The UE may send the ACK information for both cells on the feedback channel with the single channelization code.
摘要:
Techniques for automatic exposure correction of images are provided. In particular, the exposure of an input image may be improved by automatically modifying a non-linear function that characterizes the luminance of shadow, mid-tone, and highlight portions of the image. The input image may be segmented into a number of regions and each region is assigned a zone, where the zone indicates a specified range of luminance values. An initial zone assigned to a region of the image may be changed in order to reflect an optimal zone of the region. Based, in part, on the optimal zones for each region of the image, luminance modification parameters may be calculated and applied to the non-linear function in order to produce a modified version of the input image that improves the appearance of overexposed and/or underexposed regions of the input image.
摘要:
Embodiments related to the removal of blur from an image are disclosed. One disclosed embodiment provides a method of performing an iterative non-blind deconvolution of a blurred image to form an updated image. The method comprises downsampling the blurred image to form a blurred image pyramid comprising images of two or more different resolution scales, downsampling a blur kernel to form a blur kernel pyramid comprising kernels of two or more different sizes, and deconvoluting a selected image in the blurred image pyramid according to a Richardson-Lucy deconvolution process in which a bilateral range/spatial filter is employed.
摘要:
An improved high performance scheme is provided with a serial peripheral interface (SPI) to enable microcontroller-based products and other components and devices to achieve a higher serial transmit and receive data rate. An exemplary technique utilizes a CPU and an SPI having a circular FIFO structure. To prevent the memory traffic associated with any SPI accesses from conflicting with other CPU memory accesses, the technique utilizes cycle stealing direct memory access techniques for SPI data transfers with the memory. During a CPU read/write sequence, data is read/written from/to the memory through a virtual special function register (SFR). Once the virtual SFR access is detected, all accesses are redirected to the circular FIFO buffer memory, with no additional pipelining necessary. The CPU pointers can suitably increment as appropriately controlled by hardware. In addition, once an SPI transmit/receive request is made, data communication can be established between the transmit/receive buffer and the memory. To avoid structural hazard, the transmit/receive request can be suitably pipelined until the next available clock phase, for example, within one instruction cycle. As a result, for a 4 Mhz clock rate, the technique can enable a significantly higher data transfer rate, e.g., at 250 Kbytes per second, an improvement of almost twenty times the prior art data rates. The high performance technique also avoids the firmware overhead with minimum hardware control cost. For example, compared to the hardware approach using deeper buffer structures, e.g., with FIFO buffers implemented using flip-flop devices, the exemplary techniques utilize memory, e.g., dynamic or static random access memory (DRAM or SRAM) with direct memory access (DMA).
摘要:
A non-toxic coolant/lubricant is provided which is specifically designed for use in extremely high-load, high-stress machine operations, such as broaching. The composition of this coolant/lubricant includes about 8 to 15 wt % of molybdenum disulfide (MoS.sub.2) powder; about 2 to 6.6 wt % of soap flakes; about 6 to 12 wt % of a liquid polytetrafluoroethylene suspension; and about 66.4 to 84 wt % water. The liquid polytetrafluoroethylene component, which is a water-based suspension of polytetrafluoroethylene, serves as a replacement for toxic CCl.sub.4, which has been used to increase lubricity in coolant/lubricants comprising molybdenum disulfide. The replacement of CCl.sub.4 with liquid polytetrafluoroethylene in the present composition results in a non-toxic but still highly effective coolant/lubricant.