摘要:
An intelligent transmitter module (“ITM”) includes a CDR circuit for equalizing and retiming an electrical data signal, a driver for generating a modulation signal and/or performing waveform shaping of the equalized and retimed signal, and an optical transmitter configured to emit an optical signal representative of the data signal. A linear amplifier may also be included to amplify the modulation signal when the optical transmitter is a laser with managed chirp. Alternately or additionally, a microcontroller with a 14-bit or higher A2D can be included to control and optimize operation of the ITM. In one embodiment, the CDR, driver, linear amplifier, and/or microcontroller are flip chip bonded to a first substrate while the laser with managed chirp is bonded to a second substrate. The first substrate may comprise a multi-layer high frequency laminate.
摘要:
An optoelectronic device having an intelligent transmitter module (“ITM”) includes a mechanism for logging operational information regarding the ITM. The optoelectronic device includes a microcontroller and a persistent memory. The microcontroller is configured to identify the operational information, and write log information representing the operational information to the persistent memory. The operational information may include statistical data about operation, or may include measured parameters. Log entries may be made periodically and/or in response to events. The log may then be evaluated to determine the conditions under which the ITM has historically operated.
摘要:
An optoelectronic device having an intelligent transmitter module (“ITM”) includes a mechanism for logging operational information regarding the ITM. The optoelectronic device includes a microcontroller and a persistent memory. The microcontroller is configured to identify the operational information, and write log information representing the operational information to the persistent memory. The operational information may include statistical data about operation, or may include measured parameters. Log entries may be made periodically and/or in response to events. The log may then be evaluated to determine the conditions under which the ITM has historically operated.
摘要:
Test transceivers are disclosed for testing optical networks. The test transceivers generate one or more errors on a network in a specific, reproducible way, thereby enabling a tester to easily and readily identify whether network devices are operating properly, or prone to failure. A corrective transceiver is also disclosed. The corrective transceiver is configured to continually detect operating parameters of one or more network devices in a network. The corrective transceiver can identify the operating parameters through out-of-band communication with the one or more network devices. The corrective transceiver is further configured with one or more instructions to adjust its own operating parameters to re-sync with another network device as necessary to continue network communications during a failure of the network device.
摘要:
An optical transceiver that custom logs information based on input from a host computing system (hereinafter referred to as a “host”). The optical transceiver receives input from the host concerning which operational information to log; the operational information may include statistical data about system operation, or measured parameters, or any other measurable system characteristic. The input from the host may also specify one or more storage locations corresponding to the identified operational information. If one or more storage locations are specified, the optical transceiver logs the information to the corresponding storage locations, which may be an on-transceiver persistent memory, the memory of the host or any other accessible logging location. Additionally, the input from the host may specify one or more actions to be performed when the identified information is logged. If one or more actions are specified, the optical transceiver performs the specified actions when the information is logged.
摘要:
Chip identification pads for identification of integrated circuits in an assembly. In one example embodiment, an integrated circuit (IC) assembly includes a controller, a plurality of ICs, a shared communication bus connecting the controller to the plurality of ICs and configured to enable communication between the controller and each of the plurality of ICs, and a set of one or more chip identification pads formed on each IC. Each set of chip identification pads has an electrical connection pattern. The electrical connection pattern of each set is distinct from the electrical connection pattern on every other set. Each distinct electrical connection pattern represents a unique identifier of the corresponding IC thereby enabling the controller to distinguish between the ICs.
摘要:
An optical transceiver (or optical transmitter or optical receiver) that includes a memory and a processor, which receives and executes custom microcode from a host computing system (hereinafter referred to simply as a “host”). A user identifies desired optical transceiver operational features, each of which may be implemented using specific microcode. The memory receives custom microcode that aggregates all the specific microcode of the identified operational features from the host. The processor may later execute the custom microcode and cause the transceiver to perform the operational features.
摘要:
An operational optical transceiver configured to update operational firmware using an optical link of the transceiver. The optical transceiver includes at least one processor and a system memory capable of receiving firmware. The optical transceiver receives an optical signal over the optical link containing the update firmware. The optical transceiver then recovers the firmware from the optical signal. Finally, the optical transceiver provides to the system memory the recovered firmware, which when executed by the at least one processor alters the operation of the transceiver.
摘要:
An operational optical transceiver configured to initiate operation in loop back mode. The optical transceiver includes transmit and receive signal paths, a memory capable of having microcode written to it, and a configurable switch array that is used to connect and disconnect the two signal paths as appropriate for a desired loop back mode. The microcode is structured to cause the optical transceiver to control the configurable switch array. This allows for analysis and diagnostics of the signal data.
摘要:
An operational optical transceiver microcontroller configured to initiate a self-test using internalized loop backs. The microcontroller includes a memory, at least one processor and a number of input and output terminals. The output terminals are coupled to internally corresponding input terminals by a configurable switch. The memory receives microcode that, when executed by the processor, causes the microcontroller to close the switches so as to internally connect the output and input terminals. A signal is then asserted on the output terminal. This signal loops back and is received by the input terminal. The processor may then detect the microcontroller's response to the signal.