Abstract:
Alignment of a multimode waveguide to a source of light or another waveguide is evaluated using a multi-wavelength light source and a modal decomposition processing of an intensity profile of a waveguide output beam, wherein inter-modal interference is averaged out over wavelength. Fitting a superposition of mode intensity profiles to a wavelength-averaged intensity profile of the output beam provides information about the modal composition of the output beam, which may be used to assess the alignment of the multimode waveguide with respect to the input light beam, and to provide a feedback for guiding a waveguide alignment process.
Abstract:
An aberration corrector and a method to reducing a spherical aberration are disclosed. The aberration corrector has a radial, rotationally symmetric variation of refractive index including a term varying in proportion to a fourth degree of a distance from the optical axis. Since the spherical aberration causes a wavefront deviation proportional to the fourth degree of distance from the optical axis, the spherical aberration can be reduced by the aberration corrector when its thickness causes the exact amount of the phase delay corresponding to the wavefront deviation, but with an opposite sign.
Abstract:
An aberration corrector and a method to reducing a spherical aberration are disclosed. The aberration corrector has a radial, rotationally symmetric variation of refractive index including a term varying in proportion to a fourth degree of a distance from the optical axis. Since the spherical aberration causes a wavefront deviation proportional to the fourth degree of distance from the optical axis, the spherical aberration can be reduced by the aberration corrector when its thickness causes the exact amount of the phase delay corresponding to the wavefront deviation, but with an opposite sign.
Abstract:
An aberration corrector and a method to reducing a spherical aberration are disclosed. The aberration corrector has a radial, rotationally symmetric variation of refractive index including a term varying in proportion to a fourth degree of a distance from the optical axis. Since the spherical aberration causes a wavefront deviation proportional to the fourth degree of distance from the optical axis, the spherical aberration can be reduced by the aberration corrector when its thickness causes the exact amount of the phase delay corresponding to the wavefront deviation, but with an opposite sign.
Abstract:
A modal instability of a fiber amplifier may be reduced by coupling, e.g. splicing, a length of passive multimode optical fiber to an active multimode optical fiber of the fiber amplifier. Upon launching light into the passive optical fiber, some higher order transversal modes may be excited in the passive optical fiber. The higher-order modes may interfere with the fundamental mode in the passive multimode optical fiber. However, the intermodal interference of the launched modes does not cause thermal gradients in the passive optical fiber. Upon propagation in the passive multimode optical fiber, the excited optical modes may lose mutual coherence, causing a reduction of contrast of the intermodal interference pattern along the doped core of the active optical fiber, effectively reducing modal instability in the active optical fiber.
Abstract:
A beam combiner may include source elements, each configured to output a beam of light locked at a center wavelength different from center wavelengths of other source elements. The beam combiner may include a dispersive element configured to combine the beams of light into a combined beam, and a beam separator configured to separate the combined beam into an output beam and a locking beam. The beam combiner may include a spatial filter configured to prevent crosstalk within the locking beam, and to redirect the locking beam to the source elements. The dispersive element may be configured to disperse the locking beam into constituent wavelength beams. Each constituent wavelength beam may be directed to a respective one of the source elements for locking that source element at its center wavelength, and may correspond in wavelength to the center wavelength of the respective source element.