摘要:
An embodiment of the invention includes a routing architecture with a plurality of predesigned layers and a custom layer. The structure includes a plurality of parallel vertical tracks. In one layer, the tracks include a pin coupled to an input/output of an underlying function block and the track also includes a first portion of an unbroken conductive path. A second portion of the unbroken conductive path is formed under the pin in at least a second predesigned layer. In some embodiments, the second portion of the unbroken conductive path is formed in the second predesigned layer for some tracks and a third predesigned layer for other tracks. Hence, pins and unbroken conductive paths are multiplexed in a single track. In addition, the second predesigned layer further includes long horizontal conductors. When using the predesigned layers, the custom layer can be structured to provide free global routing with distinct local routing, all while using an array structure independent of routing channels and without rendering any function blocks unusable. Moreover, a structure in accordance with the invention includes conductors for clock distribution which can be used to form multiple independent clock domains. The structure is compact, yet flexible and can be customized in some embodiments with 1-2 masks.
摘要:
Described herein is an ASIC having an array of predesigned function blocks. The function blocks can be used to implement combinational logic, sequential logic, or a combination of both. The function blocks also have a selectable output drive strength. The output drive strength can be selected, in some embodiments, using mask programming.
摘要:
In accordance with the invention, a method for customizing a one-time configurable integrated circuit to include a multi-time configurable structure is disclosed. Such a method includes, in one embodiment receiving a description of circuit functionality from a user for implementation in the one-time configurable device, where the functionality includes a portion that is designated by the user to be reconfigurable. A method in accordance with an embodiment of the invention then models a reconfigurable structure that has enough capacity to accommodate the designated functionality. Optionally, some embodiments of the invention add in more capacity than is required to implement the designated functionality to allow for future reprogramming. The method then embeds the reconfigurable structure in the one-time configurable device. In certain embodiments, the one-time configurable device can be a mask-programmed MBA, gate array, or standard cell, while the reconfigurable structure is a PLA or modified PLA.
摘要:
In accordance with the invention, a method for customizing a one-time configurable integrated circuit to include a multi-time configurable structure is disclosed. Such a method includes, in one embodiment receiving a description of circuit functionality from a user for implementation in the one-time configurable device, where the functionality includes a portion that is designated by the user to be reconfigurable. A method in accordance with an embodiment of the invention then models a reconfigurable structure that has enough capacity to accommodate the designated functionality. Optionally, some embodiments of the invention add in more capacity than is required to implement the designated functionality to allow for future reprogramming. The method then embeds the reconfigurable structure in the one-time configurable device. In certain embodiments, the one-time configurable device can be a mask-programmed MBA, gate array, or standard cell, while the reconfigurable structure is a PLA or modified PLA.
摘要:
In accordance with the invention, a method for customizing a one-time configurable integrated circuit to include a multi-time configurable structure is disclosed. Such a method includes, in one embodiment receiving a description of circuit functionality from a user for implementation in the one-time configurable device, where the functionality includes a portion that is designated by the user to be reconfigurable. A method in accordance with an embodiment of the invention then models a reconfigurable structure that has enough capacity to accommodate the designated functionality. Optionally, some embodiments of the invention add in more capacity than is required to implement the designated functionality to allow for future reprogramming. The method then embeds the reconfigurable structure in the one-time configurable device. In certain embodiments, the one-time configurable device can be a mask-programmed MBA, gate array, or standard cell, while the reconfigurable structure is a PLA or modified PLA.
摘要:
A system for remotely/automatedly testing an ASIC and particularly to testing a user-designed circuit is disclosed. In general, a system in accordance with the invention includes a plurality of cells, where the cells are couplable to form a user-designed circuit, e.g., by customizing routing. Within the ASIC and prior to any knowledge of the user-designed circuit, the ASIC includes circuitry to enable internal remote/automated testing of the user-designed circuit to be later formed. The circuitry controls the input and mode of operation of the cells and the sequencing of multiple synchronous or asynchronous clock domain inputs thereby providing testing of the user-designed circuit at speed for stuck-at-faults and delay faults.
摘要:
A method for specifying stateful, transaction-oriented systems is provided. The method initiates with designating a plurality of primitive FlowModules. The method includes defining at least one FlowGate within each of the plurality of FlowModules, wherein each FlowGate includes a non-interruptible sequence of procedure code, a single point of entry and is invoked by a named concurrent call. An Arc is designated from a calling FlowGate to a called FlowGate and a Signal is generated for each named invocation of the called FlowGate. A Channel is defined for carrying the Signal. Methods for synthesizing a semiconductor device and routing signals in the semiconductor device are provided.
摘要:
A method for transparently presenting different size operands to be processed is provided. The method initiates with providing a first operand having a first bit-width. Then, a bit width of a second operand associated with a processor is determined. The second operand has a greater bit width than the first operand. Next, the first operand is transformed by aligning a least significant bit of the first operand to a lowest bit position of a transformed operand having a bit size equal to the second operand. Then, the bits of the transformed operand are sign extended and padded in a manner to allow carry propagation. Next, the transformed operand is transmitted to the processor. A method for shifting operands and a processor are also provided.
摘要:
An architecture for implementing host-based security such that data security may be applied whenever the confidential data leaves a host computer or a networked device. The improved method and architecture may be implemented in a single integrated circuit for speed, power consumption, and space-utilization reasons. Within the integrated circuit, a combination of hardware-implemented, network processor-implemented, and software-implemented functions may be provided. The innovative host-based security architecture may offer line-rate IPSec acceleration, TCP acceleration, or both.
摘要:
A system for testing an integrated circuit, and particularly a gate array, is disclosed which includes, prior to coupling the array to form a user-designed circuit, predesigned logic that enables testing of the user-designed circuit. The predesigned logic allows logic blocks in the array to operate in “freeze” mode or to operate in normal mode, where normal mode is defined by the user-designed circuit. When the logic blocks are selected to be frozen, the logic blocks behave as a series of daisy-chained master-slave flip-flops. In normal mode, a logic block can implement combinational, sequential, or other functions and still later be as a master-slave flip-flop. Moreover, each logic block is further equipped for addressable mode control, allowing selected logic blocks to be exercised in isolation once stimulus data is shifted in, simplifying test generation and improving fault coverage.