Abstract:
A flow-through electric arc system includes a chamber within an insulated sleeve having an anode at one end of the insulated sleeve and a cathode at a distal end of the insulated sleeve. Fluid flows from an inlet of the chamber, through the insulated sleeve where it is exposed to an electric arc formed between the anode and cathode, and then flows out of an outlet of the chamber. By way of increasing the flow rate of the fluid, bi-products that are released from a reaction of the fluid to the electric arc are flushed by the fluid and at least some of the bi-products are precluded from accumulating on either of the anode, cathode, or both.
Abstract:
A flow-through electric arc system includes a chamber within an insulated sleeve having an anode at one end of the insulated sleeve and a cathode at a distal end of the insulated sleeve. Fluid flows from an inlet of the chamber, through the insulated sleeve where it is exposed to an electric arc formed between the anode and cathode, and then flows out of an outlet of the chamber. By way of increasing the flow rate of the fluid, bi-products that are released from a reaction of the fluid to the electric arc are flushed by the fluid and at least some of the bi-products are precluded from accumulating on either of the anode, cathode, or both.
Abstract:
A method of exposing a fluid to plasma for the production of a gas includes forming a plasma within a bore within a sleeve, the sleeve having an input end, a central area, and an output end. Fluid flows from the input end of the sleeve, through the bore within the sleeve, and out of the output end of the sleeve at a velocity, such that, bi-products that are released from the fluid by reaction of the fluid with the plasma are flushed out of the sleeve along with gases produced by the fluid being exposed to the plasma and any fluid that remains. At least some of the bi-products that are released from the fluid by the reaction are prevented from accumulating on the sleeve.
Abstract:
A flow-through electric arc system includes a chamber within an insulated sleeve having an anode at one end of the insulated sleeve and a cathode at a distal end of the insulated sleeve. Fluid flows from an inlet of the chamber, around the insulated sleeve, then through the insulated sleeve where it is exposed to an electric arc formed between the anode and cathode. The fluid and gases then flow out of an outlet of the chamber and through a baffle that extracts the gases from the fluid so that the fluid is returned for repeated exposure to the electric arc.
Abstract:
A system for producing a gas includes a pressure vessel containing in its interior a feedstock that is oil-based and at least one set of electrodes in which an electric arc is formed between the electrodes. The system includes a mechanism for exposing the feedstock to a plasma of the electric arc thereby converting at least some of the feedstock into a gas. The gas comprises from 50-60% hydrogen, from 9-16% ethane, from 8-12% carbon monoxide, from 5-12% ethylene, from 3-8% methane, from 2-3% other trace gases, and from 1-2% carbon dioxide (all % Vol/Vol).
Abstract:
A system for gasification of a material includes a plasma generator interfaced to a reaction chamber. A feedstock such as pulverized coal is fed into a plasma jet created by the plasma generator and is gasified by the high temperatures of the plasma jet. The gas produced is then collected, filtered, and utilized, for example, in generating of electricity. Likewise, extra heat produced by the system is also used to generate electricity or other heating purposes
Abstract:
A system for reducing pollutants from the burning of a fossil fuel includes a pressure vessel containing in its interior a feedstock (e.g., methanol) and at least one set of electrodes. An electric arc is formed between the electrodes and the feedstock is exposed to a plasma of the electric arc thereby converting at least some of the feedstock into a gas. There are controls for the electric arc and a way to collect the gas. The gas is mixed with flue gases from burning of fossil fuels and secondarily burned (the mixture of flue gases and the gas in combination are ignited), thereby reducing the amount of pollutants.