Abstract:
A flow-through electric arc system includes a chamber within an insulated sleeve having an anode at one end of the insulated sleeve and a cathode at a distal end of the insulated sleeve. Fluid flows from an inlet of the chamber, through the insulated sleeve where it is exposed to an electric arc formed between the anode and cathode, and then flows out of an outlet of the chamber. By way of increasing the flow rate of the fluid, bi-products that are released from a reaction of the fluid to the electric arc are flushed by the fluid and at least some of the bi-products are precluded from accumulating on either of the anode, cathode, or both.
Abstract:
A flow-through electric arc system includes a chamber within an insulated sleeve having an anode at one end of the insulated sleeve and a cathode at a distal end of the insulated sleeve. Fluid flows from an inlet of the chamber, through the insulated sleeve where it is exposed to an electric arc formed between the anode and cathode, and then flows out of an outlet of the chamber. By way of increasing the flow rate of the fluid, bi-products that are released from a reaction of the fluid to the electric arc are flushed by the fluid and at least some of the bi-products are precluded from accumulating on either of the anode, cathode, or both.
Abstract:
An application for a recycler includes a pressure and temperature resistant metal vessel that is filled with a liquid. Within the vessel is at least one submerged electric arc between a pair of electrodes (e.g. carbon based electrodes) powered by either a DC or AC current. The electric arc produces a combustible gas as the liquid is pumped through a bore in one or both of the electrodes, delivering the liquid directly to the location of the arc, thereby reducing or eliminating any ignition of the gas by the arc. Should ignition occur, at least one vent in the electrode(s) or electrode holder(s) vents pressure from within the bore to the vessel area outside of the electrode(s).
Abstract:
An application for a recycler includes a pressure and temperature resistant metal vessel that is filled with a liquid. Within the vessel is at least one submerged electric arc between a pair of electrodes (e.g. carbon based electrodes) powered by either a DC or AC current. The electric arc produces a combustible gas as the liquid is pumped through a bore in one or both of the electrodes, delivering the liquid directly to the location of the arc, thereby reducing or eliminating any ignition of the gas by the arc. Should ignition occur, at least one vent in the electrode(s) or electrode holder(s) vents pressure from within the bore to the vessel area outside of the electrode(s).
Abstract:
A method of exposing a fluid to plasma for the production of a gas includes forming a plasma within a bore within a sleeve, the sleeve having an input end, a central area, and an output end. Fluid flows from the input end of the sleeve, through the bore within the sleeve, and out of the output end of the sleeve at a velocity, such that, bi-products that are released from the fluid by reaction of the fluid with the plasma are flushed out of the sleeve along with gases produced by the fluid being exposed to the plasma and any fluid that remains. At least some of the bi-products that are released from the fluid by the reaction are prevented from accumulating on the sleeve.
Abstract:
An application for a recycler includes a pressure and temperature resistant metal vessel that is filled with a liquid. Within the vessel is at least one submerged electric arc between a pair of electrodes (e.g. carbon based electrodes) powered by either a DC or AC current. The electric arc produces a combustible gas as the liquid is pumped through a bore in one or both of the electrodes, delivering the liquid directly to the location of the arc, thereby reducing or eliminating any ignition of the gas by the arc. Should ignition occur, at least one vent in the electrode(s) or electrode holder(s) vents pressure from within the bore to the vessel area outside of the electrode(s).
Abstract:
A system for reducing pollutants from the burning of a fossil fuel includes a pressure vessel containing in its interior a feedstock (e.g., methanol) and at least one set of electrodes. An electric arc is formed between the electrodes and the feedstock is exposed to a plasma of the electric arc thereby converting at least some of the feedstock into a gas. There are controls for the electric arc and a way to collect the gas. The gas is mixed with flue gases from burning of fossil fuels and secondarily burned (the mixture of flue gases and the gas in combination are ignited), thereby reducing the amount of pollutants.
Abstract:
An application for a recycler includes a pressure and temperature resistant metal vessel that is filled with a liquid. Within the vessel is at least one submerged electric arc between a pair of electrodes (e.g. carbon based electrodes) powered by either a DC or AC current. The electric arc produces a combustible gas as the liquid is pumped through a bore in one or both of the electrodes, delivering the liquid directly to the location of the arc, thereby reducing or eliminating any ignition of the gas by the arc. Should ignition occur, at least one vent in the electrode(s) or electrode holder(s) vents pressure from within the bore to the vessel area outside of the electrode(s).
Abstract:
A system for producing a gas includes a pressure vessel containing in its interior a feedstock that is oil-based and at least one set of electrodes in which an electric arc is formed between the electrodes. The system includes a mechanism for exposing the feedstock to a plasma of the electric arc thereby converting at least some of the feedstock into a gas. The gas comprises from 50-60% hydrogen, from 9-16% ethane, from 8-12% carbon monoxide, from 5-12% ethylene, from 3-8% methane, from 2-3% other trace gases, and from 1-2% carbon dioxide (all % Vol/Vol).
Abstract:
A combustible fluid that includes sufficient suspended charged carbon particles or nanoparticles as to affect the burning characteristics of the combustible fluid that includes the suspended charged carbon particles or nanoparticles.