Abstract:
A hydrogen-absorption alloy electrode includes, as a principal material, particles of a hydrogen-absorption alloy containing a rare earth element, Ni, Co, Al and Mn and leads to reduced deviation in battery characteristics after charging/discharging cycles by having the size distribution of the alloy particles limited such that d90/d10null8 and d90nulld10null50 nullm, where di (where i varies from 0 to 100) means a particle size at which cumulative size frequency with respect to the entire particles is i%. The alloy particles are constructed such that on the surface of the alloy particles, at least one of the following relationships holds: (the amount of Al on the surface/the amount of Al in the alloy)
Abstract:
A mount frame of the present invention includes a frame in which a plurality of openings are formed. Battery modules can be inserted removably into a plurality of openings.
Abstract:
A method for producing a nickel metal-hydride storage battery includes: (i) assembling a battery by enclosing the positive electrodes, the negative electrodes, separators, and an electrolyte in a case; (ii) charging the battery with electric current in a range of 0.05 C (ampere) to 0.2 C (ampere) until a state of charge rises to a range of 10% to 30%; (iii) overcharging the battery that has been subjected to the charging, with electric current in a range of 0.2 C (ampere) to 1 C (ampere), and thereafter discharging the same until the state of charge lowers to 10% or below; and (iv) subjecting the battery after overcharging to a plurality of charging-discharging cycles, each charging-discharging cycle being composed of charging the battery that has been subjected to the overcharging, with electric current in a range of 0.2 C (ampere) to 5 C (ampere) until the state of charge rises to a range of 60% to 95% , and discharging the same until a battery voltage lowers to a range of 0.70 V to 1.05 V. In this method, in the charging-discharging cycles, the battery is cooled with a coolant at a temperature in a range of 30null C. to 60null C. This method makes it possible to produce a nickel metal-hydride storage battery at high productivity and low cost.
Abstract:
A positive electrode plate for alkaline storage battery that does not swell very much even after repeated charge-discharge cycles and can be manufactured easily, a method for manufacturing the same, and an alkaline storage battery using the same are provided. A conductive support (nickel foam) and an active material (nickel hydroxide particles) that is supported by the support are provided. An intermediate part of a positive electrode plate has a larger porosity than surface parts thereof.
Abstract:
In each of the cells of a battery module, multiple positive electrode plates and multiple negative electrode plates are layered, each of the cells has short lateral walls and long lateral walls intervening separators are provided between the positive and negative electrodes, parallel to the long lateral walls of prismatic cell cases. Lateral edge portions of the positive electrode plates protrude beyond the group of negative electrode plates on one side, and lateral edge portions of the negative electrode plates protrude beyond the group of positive electrode plates on the opposite side. The cells are arranged side by side with adjacent short lateral walls that are integral with each other. Upper open ends of the cell cases are integrally closed with a single lid member.
Abstract:
A battery module includes a plurality of cells accommodating an electrode plate group and an electrolyte, and a single integrated battery case for accommodating the plurality of cells. The ratio of the component resistance including the connecting resistance between the cells to the reactive resistance of the electrode plate group and the electrolyte in each cell, is set in the range of 1:99-40:60 at a temperature of 25null C. Thereby, the internal resistance per cell is reduced, and higher power output and improved service life characteristics are achieved.
Abstract:
After joining strips of lead plates in a lengthwise direction to a strip of porous metal sheet having a three-dimensional structure, the metal sheet is rolled entirely or in the vicinity of the lead plates. The porous metal sheet is then cut into several electrode substrates, which are coated with active materials and further cut into several electrode plates having a lead plate on one side thereof.
Abstract:
A group of electrodes are accommodated in a prismatic cell case of a rechargeable battery. Intervening separators are provided between positive and negative electrode plates arranged alternately in parallel to long lateral walls of the cell case. The positive electrode plates each include a lead portion having a surface on which at least one lead plate is attached. Lateral edges of the positive electrode plates protrude beyond the negative electrode plates on one side, and lateral edges of the negative electrode plates protrude beyond the group of positive electrode plates on the opposite side. The protruding portions form the lead portions. Upper open ends of the cell cases are closed by an integral lid member.
Abstract:
An active material for a positive electrode of an alkaline storage battery comprising particles containing nickel hydroxide and provided with pores, and a conductive material filled in the pores. The conductive material includes a cobalt compound and at least one element selected from the group consisting of rare earth elements and zinc.