Abstract:
A wafer-level package has a first die and a second die. The first die has a first clock source arranged to generate a first clock, a first sub-system arranged to generate transmit data, and an output circuit arranged to output the transmit data according to the first clock. The second die has a second sub-system, a second clock source arranged to generate a second clock, and an input circuit having an asynchronous first-in first-out (FIFO) buffer. The input circuit buffers the transmit data transferred from the output circuit in the asynchronous FIFO buffer according to the first clock, and outputs the buffered transmit data in the asynchronous FIFO buffer to the second sub-system according to the second clock.
Abstract:
A semiconductor package structure is provided. The semiconductor package structure includes a substrate, a first semiconductor die, and a second semiconductor die. The substrate includes a first substrate partition and a second substrate partition. The first substrate partition has a first wiring structure. The second substrate partition is adjacent to the first substrate partition and has a second wiring structure. The first substrate partition and the second substrate partition are surrounded by a first molding material. The first semiconductor die is disposed over the substrate and electrically coupled to the first wiring structure. The second semiconductor die is disposed over the substrate and electrically coupled to the second wiring structure.
Abstract:
A wafer-level package includes a plurality of dies and a plurality of connection paths. The dies include at least a first die and a second die. The dies are arranged in a side-by-side fashion, and a first side of the first die is adjacent to a first side of the second die. The connection paths connect input/output (I/O) pads arranged on the first side of the first die to I/O pads arranged on the first side of the second die, wherein adjacent I/O pads on the first side of the first die are connected to adjacent I/O pads on the first side of the second die via connection paths on only a single layer. For example, the first die is identical to the second die. For another example, the wafer-level package is an integrated fan-out (InFO) package or a chip on wafer on substrate (CoWoS) package. For yet another example, the dies are assembled in the wafer-level package to perform a network switch function.
Abstract:
A semiconductor package structure is provided. The semiconductor package structure includes a substrate, a first semiconductor die, and a second semiconductor die. The substrate includes a first substrate partition and a second substrate partition. The first substrate partition has a first wiring structure. The second substrate partition is adjacent to the first substrate partition and has a second wiring structure. The first substrate partition and the second substrate partition are surrounded by a first molding material. The first semiconductor die is disposed over the substrate and electrically coupled to the first wiring structure. The second semiconductor die is disposed over the substrate and electrically coupled to the second wiring structure.
Abstract:
A wafer-level package includes a plurality of dies and a plurality of connection paths. The dies include at least a first die and a second die. The dies are arranged in a side-by-side fashion, and a first side of the first die is adjacent to a first side of the second die. The connection paths connect input/output (I/O) pads arranged on the first side of the first die to I/O pads arranged on the first side of the second die, wherein adjacent I/O pads on the first side of the first die are connected to adjacent I/O pads on the first side of the second die via connection paths on only a single layer. For example, the first die is identical to the second die. For another example, the wafer-level package is an integrated fan-out (InFO) package or a chip on wafer on substrate (CoWoS) package. For yet another example, the dies are assembled in the wafer-level package to perform a network switch function.
Abstract:
A wafer-level package has a first die and a second die. The first die has a first clock source arranged to generate a first clock, a first sub-system arranged to generate transmit data, and an output circuit arranged to output the transmit data according to the first clock. The second die has a second sub-system, a second clock source arranged to generate a second clock, and an input circuit having an asynchronous first-in first-out (FIFO) buffer. The input circuit buffers the transmit data transferred from the output circuit in the asynchronous FIFO buffer according to the first clock, and outputs the buffered transmit data in the asynchronous FIFO buffer to the second sub-system according to the second clock.