Abstract:
A configurable fluid delivery system and methods for its use are disclosed. The system may include one or more control units, fluid delivery units, fluid actuator units, and disposable units. Data sources and sensors on each of the delivery units, actuator units, and disposable units may provide data to the control unit, thereby identifying the components along with the manner in which they may be configured. The control unit may notify a user regarding the status of any one or more of the delivery, actuator, and disposable units to indicate their appropriateness for delivering a fluid according to one or more selected procedures and protocols. Also disclosed are methods by which the configurable fluid delivery unit may provide data to a user to assist the user in assembling and testing a particular fluid delivery configuration for a specific use.
Abstract:
Various syringe systems are disclosed. One illustrative syringe system may include a syringe body having a hollow lumen and a distal end. The syringe body may be configured to house a plurality of fluids therein. A first plunger may be positioned in the hollow lumen of the syringe body, forming a first seal with an inner wall of the syringe body, and forming a first compartment between the first plunger and the distal end of the syringe. A second plunger may be positioned proximal to the first plunger in the hollow lumen of the syringe body, forming a second seal with the inner wall of the syringe body, and forming a second compartment between the first plunger and the second plunger. A plurality of recesses may be disposed about the inner wall of the syringe body near the distal end of the syringe body.
Abstract:
A device for delivery of a radiopharmaceutical and, in some embodiments, delivery of a pharmaceutical agent are described herein. Various other components for delivery systems including tubing management systems, primer caps, diffusion chambers, radiation shields and syringe shields, and other devices and methods are also described.
Abstract:
Systems and methods for intelligently delivering fluid to a targeted tissue. The systems and methods may include directing a pump to distribute fluid to a targeted tissue and receiving one or more signals from an intracorporeal sensing system, where the one or more signals correspond to one or more sensed feedback parameters at the targeted tissue. The systems and methods may also include determining whether the one or more sensed feedback parameters are within an acceptable range. If the one or more sensed feedback parameters are not within the acceptable range, the systems and methods may include determining an adjusted velocity for the plunger necessary to adjust the pressure of the fluid in the pump so that the one or more sensed feedback parameters move within the acceptable range and directing the pump to distribute the fluid at the adjusted velocity.
Abstract:
Various syringe systems are disclosed. One such syringe system may include a body having a hollow lumen and a distal end, a vacuum chamber disposed within the hollow lumen of the syringe body, a first plunger connected to a distal portion of the vacuum chamber, the first plunger forming a first seal against an inner surface of the syringe body and defining a fluid delivery volume between the first plunger and the distal end of the syringe body, a second plunger disposed within the vacuum chamber, the second plunger forming a second seal against an inner surface of the vacuum chamber and defining a proximal and distal volume compartments within the vacuum chamber, and a piston affixed to the second plunger, the piston configured to move the second plunger within the vacuum chamber, thereby altering a volume of the proximal volume compartment and a volume of the distal volume compartment.
Abstract:
A syringe shield used for containing radioactive drugs in order to reduce healthcare provider's exposure to radiation or to reduce or eliminate ambient light contamination to optically sensitive components in a syringe.