Abstract:
An implantable active medical device includes a housing defining a hermetic cavity, a lead connector receptacle extending into the implantable active medical device, and a solid state light source disposed within the hermetic cavity and optically coupled to the lead connector receptacle.
Abstract:
An implantable active medical device system includes an active medical device and a lead extending between a proximal portion electrically coupled to the active medical device and a distal end portion configured to emit light. The distal end portion includes a solid state light source disposed within a light transmissive ring element. The light transmissive ring element forms an exterior segment of the distal end portion. The light transmissive ring element defines at least a portion of a hermetic cavity.
Abstract:
In some examples, a system includes processing circuitry configured to receive a first set of information, the first set of information comprising information of actual therapy delivered to a patient over a plurality of instances of therapy delivery. The processing circuitry may determine, based upon the first set of information, a therapy usage pattern. The processing circuitry may determine a modification to a programmed therapy schedule based on the therapy usage pattern. The processing circuitry may generate for output the modification to the programmed therapy schedule.
Abstract:
Systems and method may be used for interfacing with a patient. Systems may include a plurality of electrodes in electrical communication with a processor. The processor may determine a relative impedance difference between a first electrode and a second electrode, and apply a sub-therapeutic stimulation pulse to one of the first and second electrodes to adjust the relative impedance difference therebetween. Systems may include a processor capable of one or both of providing therapeutic stimulation to a patient via at least one electrode, and receiving electrical signals indicative of the patient's physiological activity. In some examples, the processor may simultaneously provide therapeutic stimulation to a patient and receive electrical signals from the patient indicative of the patient's physiological activity.
Abstract:
Medical devices include fixation structures that include retained portions that provide medical lead fixation within the medical devices. Lead extensions include fixation structures that include retained portions that provide medical lead fixation within the lead extensions. A grip that a clinician may grasp and manipulate is engaged with a nose structure of a header block of the medical device or a connector block of a lead extension and manipulation of the grip causes compression of a deformable structure to ultimately create fixation of the lead or lead extension within the header block or the lead within the extension connector block. The deformable structure may be the retained portion of the fixation structure or alternatively may be separate from the fixation structure.
Abstract:
Medical devices include fixation structures that include retained portions that provide medical lead fixation within the medical devices. Lead extensions include fixation structures that include retained portions that provide medical lead fixation within the lead extensions. A grip that a clinician may grasp and manipulate is engaged with a nose structure of a header block of the medical device or a connector block of a lead extension and manipulation of the grip causes compression of a deformable structure to ultimately create fixation of the lead or lead extension within the header block or the lead within the extension connector block. The deformable structure may be the retained portion of the fixation structure or alternatively may be separate from the fixation structure.
Abstract:
Systems and method may be used for interfacing with a patient. Systems may include a plurality of electrodes in electrical communication with a processor. The processor may determine a relative impedance difference between a first electrode and a second electrode, and apply a sub-therapeutic stimulation pulse to one of the first and second electrodes to adjust the relative impedance difference therebetween. Systems may include a processor capable of one or both of providing therapeutic stimulation to a patient via at least one electrode, and receiving electrical signals indicative of the patient's physiological activity. In some examples, the processor may simultaneously provide therapeutic stimulation to a patient and receive electrical signals from the patient indicative of the patient's physiological activity.
Abstract:
An implantable active medical device includes a housing defining a hermetic cavity, a lead connector receptacle extending into the implantable active medical device, and a solid state light source disposed within the hermetic cavity and optically coupled to the lead connector receptacle.
Abstract:
A user interface for a power transfer device configured to wirelessly transfer transcutaneous power to an implantable medical device. The user interface may enable a user to start and stop power transfer, e.g., to recharge a battery′ on the implantable medical device. In some examples, the user interface may present the user a display that indicates whether the power transfer device is performing open or closed loop recharging, indicate and control therapy delivery′ status of the implantable medical device and indicate both die power transfer device battery′ level and/or indicate the battery level for the implantable medical device, lire user interface may communicate with the user with a set of indicator lights that may flash, pulse and change color as needed.
Abstract:
An implantable active medical device system includes an active medical device and a lead extending between a proximal portion electrically coupled to the active medical device and a distal end portion configured to emit light. The distal end portion includes a solid state light source disposed within a light transmissive ring element. The light transmissive ring element forms an exterior segment of the distal end portion. The light transmissive ring element defines at least a portion of a hermetic cavity.