Abstract:
A method and apparatus for controlling access to a logic circuit in a battery by one or more components connected to the battery includes the components initially providing no voltage to a data contact, and sampling a voltage level at the data contact to determine if another component is presently connected to the logic circuit. When the sampled voltage indicates no other component is presently accessing the logic circuit, the component applies a voltage to the logic circuit via the data contact and access the logic circuit. When the sampled voltage indicates that a prior-connected component is connected to the battery, the component uses a voltage level provided by the prior-connected component to access the logic circuit.
Abstract:
A method and apparatus for controlling access to one or more memories in a rechargeable battery includes a switching circuit that connects the memory to a device data contact, and disconnects the memory from a charger data contact, when the rechargeable battery is connected only to a device powered by a battery. The switching circuit, however, connects the memory to the charger data contact and disconnects it from the device data contact. In some embodiments a second memory that contains a subset of the data in the first memory is connected to the device data contact when the first memory is connected to the charger data contact.
Abstract:
Embodiments include a portable rechargeable battery pack, system, and external adapter that allow the portable rechargeable battery pack to both power a host device though a set of host contacts and provide power through a set of charging contacts. The portable rechargeable battery pack includes a charge protection circuit that prevents an excessive discharge current through the charging contacts and allows high charge current when charging the portable rechargeable battery pack. A discharge circuit allows a low level discharge current through the charging contacts to provide power to other devices.
Abstract:
Disclosed herein are methods and systems for providing a ballast load for a magnetic resonance power source. One embodiment takes the form of a magnetic resonance power source that includes a source coil, a load-detection module, a tunable ballast coil circuit, and a controller programmed to carry out a set of functions. The set of functions includes obtaining, via the load-detection module, an estimated load on the source coil. The set of functions also includes decreasing the power received by the tunable ballast coil circuit from the source coil when the estimated load on the source coil is greater than a desired load on the source coil. The set of functions also includes increasing the power received by the tunable ballast coil circuit from the source coil when the estimated load on the source coil is less than the desired load on the source coil.