Abstract:
A communication device is provided in the present invention. The communication device comprises an oscillation signal source, a tunable capacitor array, a frame counter; and a control module. The control module is configured to jointly or separately control the tunable capacitor array and the frame counter to compensate a first frequency offset of the oscillation signal source when the communication device operates in a first mode, and to jointly or separately control the tunable capacitor array and the frame counter to compensate a second frequency offset of the oscillation signal source when the communication device operates in a second mode.
Abstract:
Direct digital frequency synthesis is the process by which a digital frequency synthesizer component may output a stable, precise clock frequency at any of a broad range of possible frequency output values for any number of applications, usually across an integrated circuit. The digital frequency synthesizer set forth in this disclosure is a combination of a controller configured to receive a frequency control word and generate a first frequency control sub-word and a second frequency control sub-word based on the frequency control word, a frequency generator configured to generate a source frequency within a first predetermined frequency range based on the first frequency control sub-word, and a variable frequency divider configured to generate an output frequency within a second predetermined range based on the second frequency control sub-word and the source frequency.
Abstract:
A method for signal processing is provided. The method includes: obtaining a predistortion signal for compensating nonlinear distortion generated by a transmission path; adding the predistortion signal to the transmission path to compensate the nonlinear distortion; and outputting the nonlinear distortion compensated signal by the transmission path. With the above method, the nonlinear distortion of the transmission path can be compensated without modifying a current transmission path, thereby enhancing transmission performance of a transmitter by using a simple structure.
Abstract:
A dual-edge triggered variable frequency divider for use in digital frequency synthesis is disclosed. The variable frequency divider utilizes a multiphase clock and a logic unit, including both positive and negative edge triggered unit delay elements connected in parallel. The variable frequency divider generates a clock pulse from a signal source that corresponds to an input value from a logic unit, generates a next input value by the logic unit based on the input value and a frequency control word, and transmits the next input value from the logic unit to the signal source in response to the clock pulse. The multiphase clock is configured to generate the clock signal in response to the falling edge of the first pulse of the clock signal. Iteratively selecting signals by this process results in an observed output frequency of fout=N*fsrc/D, where fsrc is the input signal frequency, N is the number of phases of the multi-phase (N-phase) clock, and D is an integer between 1 and N configured by the frequency control word.
Abstract:
An edge alignment apparatus includes: a signal source, for generating a first and a second square wave signals; a phase delay circuit, for receiving the first and the second square wave signals to generate a delayed first and a delayed second square wave signals; a data circuit, for generating a third square wave signal according to the delayed second square wave signal; and a phase calibrating circuit, for receiving the third square wave signal and the delayed first squared wave signal to generate at least one phase tuning signal to the phase delay circuit for tuning a phase difference between the delayed first and the delayed second square wave signals, such that a signal edge of the third square wave signal aligns with that of the first square wave signal. The first, second and third square wave signals have a same frequency.
Abstract:
Amplitude-modulation (AM) to AM (AMAM) predistortion data is obtained from an AMAM predistorter. When applied to a digital quadrature signal, the AMAM predistortion data predistorts in-phase (I) and quadrature (Q) data words in a digital quadrature modulator. AM to phase-modulation (AMPM) predistortion data is obtained that is associated with the AMAM predistortion data and a frequency change or a phase shift in a local oscillator (LO) signal is compelled in accordance with the AMPM predistortion data. The frequency-changed or phase-shifted LO signal is provided to a digital upconverter such that an output signal of the digital upconverter is linearized with respect to at least phase distortion in the digital upconverter.
Abstract:
A method for signal processing is provided. The method includes: obtaining a predistortion signal for compensating nonlinear distortion generated by a transmission path; adding the predistortion signal to the transmission path to compensate the nonlinear distortion; and outputting the nonlinear distortion compensated signal by the transmission path. With the above method, the nonlinear distortion of the transmission path can be compensated without modifying a current transmission path, thereby enhancing transmission performance of a transmitter by using a simple structure.
Abstract:
A signal processing system includes a module under test, an oscillation signal generator, a translational filter, and a testing module. The module under test has a signal input end. The oscillation signal generator generates an oscillation signal. The translational filter includes a mixer controlled by the oscillation signals. The mixer has a high-frequency side and a low-frequency side. The high-frequency side is coupled to the signal input end of the module under test. The testing module is coupled to the low-frequency side of the mixer. When the signal processing system is in a testing mode, the testing module provides a testing signal to the low-frequency side, so as to generate a high-frequency testing signal at the high-frequency side of the mixer.
Abstract:
A communication device is provided in the present invention. The communication device comprises an oscillation signal source, a tunable capacitor array, a frame counter; and a control module. The control module is configured to jointly or separately control the tunable capacitor array and the frame counter to compensate a first frequency offset of the oscillation signal source when the communication device operates in a first mode, and to jointly or separately control the tunable capacitor array and the frame counter to compensate a second frequency offset of the oscillation signal source when the communication device operates in a second mode.
Abstract:
An edge alignment apparatus includes: a signal source, for generating a first and a second square wave signals; a phase delay circuit, for receiving the first and the second square wave signals to generate a delayed first and a delayed second square wave signals; a data circuit, for generating a third square wave signal according to the delayed second square wave signal; and a phase calibrating circuit, for receiving the third square wave signal and the delayed first squared wave signal to generate at least one phase tuning signal to the phase delay circuit for tuning a phase difference between the delayed first and the delayed second square wave signals, such that a signal edge of the third square wave signal aligns with that of the first square wave signal. The first, second and third square wave signals have a same frequency.