Abstract:
A modulator generates a baseband digital signal from an information-bearing digital signal. The baseband signal has time-varying phase and amplitude defined by a sequence of complex data words, each having an in-phase (I) component and a quadrature (Q) component. A noise-shaping modulator generates a noise-shaped digital signal from the baseband digital signal such that quantization noise in the noise-shaping modulator is attenuated by a spectral null of its noise transfer function. The spectral null is selected by a noise-shaping parameter corresponding to a selected one of a plurality of output frequencies. A signal converter generates an analog signal conveying the information of the information-bearing digital signal on an analog carrier signal having the selected output frequency.
Abstract:
A modulator generates a baseband digital signal from an information-bearing digital signal. The baseband signal has time-varying phase and amplitude defined by a sequence of complex data words, each having an in-phase (I) component and a quadrature (Q) component. A noise-shaping modulator generates a noise-shaped digital signal from the baseband digital signal such that quantization noise in the noise-shaping modulator is attenuated by a spectral null of its noise transfer function. The spectral null is selected by a noise-shaping parameter corresponding to a selected one of a plurality of output frequencies. A signal converter generates an analog signal conveying the information of the information-bearing digital signal on an analog carrier signal having the selected output frequency.
Abstract:
To compensate for second-order intermodulation (IM2), it is determined whether a blocking signal is present at a receiver. A biasing differential is applied across downconverting mixers in the receiver that minimizes cross-correlation of quadrature signal components of a signal produced by the receiver in the presence of the blocking signal.
Abstract:
To estimate complex factors for use in predistortion of a power amplifier, a complex factor is selected a set of complex factors a computation interval. A solution value is estimated for the selected complex factor during the computation interval by an iterative computation that constrains the estimated solution value towards a final solution value over an arbitrary number of iterations that is not bounded by the duration of the computation interval. A cumulative error in the estimated solution value is computed at each iteration over consecutive computation intervals. From the cumulative error, it is determined whether a convergence criterion is met and, if so, the estimating is terminated. The termination occurs independently of the solution value estimated for any one of the complex factors in the set.
Abstract:
A communication system including a configurable sample rate converter and a controller is provided. The configurable sample rate converter, configured to convert a digital signal with a first sample rate to a converted signal with a second sample rate, being operable in one of a first configuration and a second configuration. The controller, configured to dynamically control the sample rate converter to operate in one of the first configuration and the second configuration according to at least one condition.
Abstract:
A predistortion function is evaluated with in-phase (I) and quadrature (Q) data words as arguments, while additive I and Q data words are generated in accordance with a comparison of the I and Q data words with a full scale value that generates maximum current in a digital power amplifier. The additive I and Q data words are added to the computed I and Q data words to produce predistorted I and Q data words. The predistorted I and Q data words are provided in a sequence to the digital power amplifier, which generates a corresponding radio-frequency (RF) analog signal.
Abstract:
A transceiver includes an input node to receive an input signal having in-phase (I) data and quadrature (Q) data, the input signal including several data samples. A correlation module determines an autocorrelation of the in-phase data, an autocorrelation of the quadrature data, a difference between the autocorrelation of the in-phase data and the autocorrelation of the quadrature data, and a cross correlation between the in-phase data and the quadrature data. An averaging module determines an average of the difference between the autocorrelation of the in-phase data and the autocorrelation of the quadrature data, and an average of the cross correlation between the in-phase data and the quadrature data, in which the averages are determined over a specified number of data samples. A compensation module, based on the average difference between the autocorrelation of the in-phase data and the autocorrelation of the quadrature data, and the average cross correlation between the in-phase data and the quadrature data, determines compensated in-phase data and quadrature data having reduced IQ mismatch.
Abstract:
Direct digital frequency synthesis is the process by which a digital frequency synthesizer component may output a stable, precise clock frequency at any of a broad range of possible frequency output values for any number of applications, usually across an integrated circuit. The digital frequency synthesizer set forth in this disclosure is a combination of a controller configured to receive a frequency control word and generate a first frequency control sub-word and a second frequency control sub-word based on the frequency control word, a frequency generator configured to generate a source frequency within a first predetermined frequency range based on the first frequency control sub-word, and a variable frequency divider configured to generate an output frequency within a second predetermined range based on the second frequency control sub-word and the source frequency.
Abstract:
A communication system including a configurable sample rate converter and a controller is provided. The configurable sample rate converter, configured to convert a digital signal with a first sample rate to a converted signal with a second sample rate, being operable in one of a first configuration and a second configuration. The controller, configured to dynamically control the sample rate converter to operate in one of the first configuration and the second configuration according to at least one condition.
Abstract:
To estimate complex factors for use in predistortion of a power amplifier, a complex factor is selected a set of complex factors a computation interval. A solution value is estimated for the selected complex factor during the computation interval by an iterative computation that constrains the estimated solution value towards a final solution value over an arbitrary number of iterations that is not bounded by the duration of the computation interval. A cumulative error in the estimated solution value is computed at each iteration over consecutive computation intervals. From the cumulative error, it is determined whether a convergence criterion is met and, if so, the estimating is terminated. The termination occurs independently of the solution value estimated for any one of the complex factors in the set.