摘要:
A method, an implantable medical device, and a computer-readable medium encoded with programming instructions allow monitoring of a hematocrit value and an SvO2 level of a patient, making use of at least one medical lead connected to an implantable medical device that carries an optical sensor module that measures at least one hematocrit value and at least one SvO2 value using at least first, second and third light radiation wavelengths, by determining a present hematocrit value from at least one of the measured hematocrit values and determining a present SvO2 value from at least one of the measured SvO2 values, and determining a patient status by evaluating the present hematocrit value and the present SvO2 value, to allow a change in the patient status to be identified.
摘要:
In a cardiac assist device and method, a microphone is placed in contact with the epicardium of the heart of a patient, and heart and lung sounds are simultaneously detected at the placement location of the microphone. The heart and lung sounds are automatically analyzed to set an appropriate cardiac therapy for the patient.
摘要:
An implantable medical device has a pressure sensing arrangement to measure right ventricular pressure of a heart including a pressure sensor adapted to be positioned in the right ventricle of the heart, to measure the pressure and to generate a pressure signal in response to the measured pressure. The pressure sensing arrangement also has a pressure signal processor and a timing unit. The processor determines from the pressure signal, using diastolic timing signals from the timing unit based on the pressure signal identifying the diastolic phase, a diastolic pressure signal representing the ventricular pressure only during the diastolic phase of the heart cycle.
摘要:
An implantable heart stimulating device has a stimulation pulse generator that emits stimulation pulses at an adjustable stimulation rate, an activity sensor that emits an activity signal in response to detected activity of the patient, and a physiological parameter sensor that generates a physiological sensor signal in response to a detected physiological parameter. The activity and physiological sensor signals are supplied to a control arrangement that sets the stimulation rate for the stimulation pulse generator by executing a stimulation rate algorithm dependent on those signals. In the stimulation rate algorithm, if the physiological signal indicates an emotional stress on the part of the patient, the stimulation rate is increased to an adjustable emotional stress rate level, and if no increase in the activity signal occurs during a predetermined time period following the stimulation rate increase, the stimulation rate is decreased.
摘要:
In an implantable medical device and a method for stimulating a heart of a patient, at least one left atrial pressure (LAP) signal over a cardiac cycle is obtained. The A-wave is identified using the LAP signal and a maximum positive rate of change of the A-wave of the LAP signal is determined. The maximum positive rate of change of the A-wave corresponds to the rate which the pressure in the atrium raises as the atria contraction forces more blood into the ventricle during the very last stage of diastole. Further, AV and/or VV delay is adjusted in response to the maximum positive rate of change of the A-wave, wherein a reduction of the maximum positive rate of change of the A-wave indicates an AV and/or VV delay providing an enhanced hemodynamic performance.
摘要:
CRT settings for an implantable medical device are determined by applying pacing pulses to heart chambers of a scheme of different combinations of interchamber delays. A respective width parameter value representing an R or P wave width is determined for each such delay combination based on an ECG representing signal and the width parameter values are employed to estimate a parametric model defining the width parameter as a function of interchamber delays. Candidate interchamber delays that minimize the width parameter are determined from the parametric model and employed to determine optimal CRT settings. The technique provides an efficient way of finding optimal CRT settings when multiple pacing sites are available in a heart chamber.
摘要:
A first lead provides therapeutic stimulation to the heart and includes a first mechanical sensor that measures physical contraction and relaxation of the heart. A controller induces delivery of therapeutic stimulation via the first lead. The controller receives signals from the first mechanical sensor indicative of the contraction and relaxation; develops a template signal that corresponds to the contraction and relaxation; and uses the template signal to modify the delivery of therapeutic stimulations. In another arrangement, a second lead, with a second mechanical sensor also provides signals to the controller indicative of contraction and relaxation. The first mechanical sensor is adapted to be positioned at the interventricular septal region of the heart, and the second mechanical sensor is adapted to be positioned in the lateral region of the left ventricle. The controller processes the signals from the first mechanical sensor and the second mechanical sensor to develop a dysynchrony index.
摘要:
An implantable medical device, is designed to collect a signal representative of the electric activity of the heart and determine a cardiogenic impedance signal for at least a portion of the heart. An R-wave detector of the IMD detects the timing of an R-wave during a cardiac cycle based on the signal representative of the electric activity. A minimum detector detects the timing of a cardiogenic impedance minimum in the cardiogenic impedance signal and within a systolic time window of the cardiac cycle. A detected arrhythmia is then classified by the IMD based on the timing of the R-wave detected by the R-wave detector and the timing of the cardiogenic impedance minimum detected by the minimum detector.
摘要:
Methods and systems are provided for performing ventricular arrhythmia monitoring using at least two sensing channels that are each associated with different sensing vectors, for example by different pairs of extracardiac remote sensing electrodes. Myopotential associated with each of the sensing channels in monitored, and a ventricular arrhythmia monitoring mode is selected based thereon (e.g., based on determined myopotential levels). Ventricular arrhythmia monitoring is then performed using the selected monitoring mode.
摘要:
An apparatus for determining variation over time of a medical parameter of a human being obtained from a sensed signal has a sensor implantable in the human being for sensing the signal. A comparator compares at least one characteristic property, derived from the sensed signal obtained for at least one predetermined first level of activity of the human being, with corresponding reference property of a sensed reference signal, obtained for a predetermined reference level of activity of the human being, for determining a relation between the characteristic property of the sensed signal and the reference property. A trend determining unit determines trends in the medical parameter by analyzing the relation between the characteristic property of the sensed signal obtained at different times and the reference property. A corresponding method also function an implant for heart failure diagnostics also function as described. A sensor is then arranged to pick up dynamic mechanical information from the heart of the human being and generate a corresponding signal. A heart stimulator includes such an implant and a control unit arranged to control stimulation of the heart depending on determined trends in the medical parameter.