摘要:
An asymmetric Static Random Access Memory (SRAM) cell is provided. The SRAM cell comprises first and second storage nodes, drive transistors and access transistors. The first and second storage nodes are configured to store complementary voltages. The drive transistors are configured to selectively couple each of the first and second storage nodes to corresponding high and low voltage power supplies, and maintain a first logic state through a feedback loop. The access transistors are configured to selectively couple each of the first and second storage nodes to corresponding first and second bit-lines and maintain a second logic state through relative transistor leakage currents. A method for reading from and writing to the SRAM cell are also provided.
摘要:
A static random access memory (SRAM) cell array is provided that reduces leakage current. The SRAM cell array is configured in a plurality of columns. Each of the columns comprises: a column virtual ground node; a column switch for selectively coupling the column virtual ground node to one of a ground or a nominal low voltage; and a plurality of segments. Each of the segments comprises: a segment virtual ground node; a plurality of SRAM cells including a virtual ground signal coupled to the segment virtual ground node; and a virtual ground switch for selectively coupling the segment virtual ground node to one of either a nominal low voltage or the column virtual ground node. A method for operating the SRAM cell array is also described.
摘要:
An offset cancellation scheme for sense amplification is described. The scheme consists of group of transistors which are selectively coupled to high and low voltage levels via multi-phase timing. This results in a voltage level on sensing nodes of interest which are a function of transistor mismatch. The resulting voltage levels act to compensates for the transistor mismatch, thereby improving the reliability of the sense amplifier in the presence of process non-idealities. The offset cancellation scheme is applicable to numerous types of sense amplifiers, amplifiers, and comparators.
摘要:
An asymmetric Static Random Access Memory (SRAM) cell is provided. The SRAM cell comprises first and second storage nodes, drive transistors and access transistors. The first and second storage nodes are configured to store complementary voltages. The drive transistors are configured to selectively couple each of the first and second storage nodes to corresponding high and low voltage power supplies, and maintain a first logic state through a feedback loop. The access transistors are configured to selectively couple each of the first and second storage nodes to corresponding first and second bit-lines and maintain a second logic state through relative transistor leakage currents. A method for reading from and writing to the SRAM cell are also provided.
摘要:
An offset cancellation scheme for sense amplification is described. The scheme consists of group of transistors which are selectively coupled to high and low voltage levels via multi-phase timing. This results in a voltage level on nodes of interest which are a function of transistor mismatch. The resulting voltage levels act to compensates for the transistor mismatch, thereby improving the reliability of the sense amplifier in the presence of process non-idealities. The offset cancellation scheme is applicable to numerous types of sense amplifiers.
摘要:
A static random access memory (SRAM) cell array is provided that reduces leakage current. The SRAM cell array is configured in a plurality of columns. Each of the columns comprises: a column virtual ground node; a column switch for selectively coupling the column virtual ground node to one of a ground or a nominal low voltage; and a plurality of segments. Each of the segments comprises: a segment virtual ground node; a plurality of SRAM cells including a virtual ground signal coupled to the segment virtual ground node; and a virtual ground switch for selectively coupling the segment virtual ground node to one of either a nominal low voltage or the column virtual ground node. A method for operating the SRAM cell array is also described.