摘要:
The invention relates to a lithographic apparatus that includes a system configured to condition a radiation beam or project a patterned radiation beam onto a target portion of a substrate. The system includes an optically active device configured to direct the radiation beam or the patterned radiation beam, respectively, and a support structure configured to support the optically active device. The apparatus further includes a gas supply for providing a background gas into the system. The radiation beam or patterned radiation beam react with the background gas to form a plasma that includes a plurality of ions. The support structure includes an element that includes a material that has a low sputtering yield, a high sputter threshold energy, or a high ion implantation yield, to reduce sputtering and the creation of sputtering products.
摘要:
An optical element, especially a normal-incidence collector mirror, for radiation in the EUV and/or soft X-ray region of wavelengths is described. The element has a substrate, a multilayer coating with an optically active region, and a capacitor, having a first and a second capacitor electrode. At least one layer of the multilayer coating serves as the first capacitor electrode. At least one dielectric layer is provided between the two capacitor electrodes. Also described is an optical system with at least one optical element, having a first electrode arranged in the vicinity of the optical element.
摘要:
A lithographic projection apparatus includes an alignment sensor having an electron beam source constructed and arranged to provide an electron beam for impinging on an alignment marker on a substrate, and a back-scattered electron detector constructed and arranged to detect electrons back-scattered from the alignment marker. The alignment sensor is independent of the projection system and projection radiation, and is an off-axis alignment sensor.
摘要:
The invention relates to a method of inspecting a specimen surface. The method comprises the steps of generating a plurality of primary beams directed towards the specimen surface, focussing the plurality of primary beams onto respective loci on the specimen surface, collecting a plurality of secondary beams of charged particles originating from the specimen surface upon incidence of the primary beams, converting at least one of the collected secondary beams into an optical beam, and detecting the optical beam.