摘要:
A distance measuring method for detecting the spatial dimension of at least one target by at least one emission of a multiplicity of light pulses, in particular laser light, towards the target, detecting the light pulse scattered back by the target by means of a multiplicity of distance measuring pixels and eliminating the distance to the target for each pixel, wherein each light pulse can be detected within a measuring interval Ti from at least two partial intervals tij and the detection of at least one repetition constitutes a detection step performed in at least two stages wherein the measuring interval T˜ is shortened from stage to stage.
摘要:
A distance measuring method for detecting the spatial dimension of at least one target by at least one emission of a multiplicity of light pulses, in particular laser light, towards the target, detecting the light pulse scattered back by the target by means of a multiplicity of distance measuring pixels and eliminating the distance to the target for each pixel, wherein each light pulse can be detected within a measuring interval Ti from at least two partial intervals ti,j and the detection of at least one repetition constitutes a detection step performed in at least two stages wherein the measuring interval Ti is shortened from stage to stage.
摘要:
The invention relates to an electro-optical distance measuring method wherein frequency-modulated optical radiation is emitted onto at least one target to be measured. Once the radiation back-scattered to the target is received, the chirp of radiation is modeled by means of a phase function Φ(t) having parameters cj, thereby making description of the deviation of the chirp from the linear profile possible. The parameters used for description are at least partially determined from measurements or are coestimated during numerical signal processing.
摘要:
The invention relates to an electro-optical distance measuring method wherein frequency-modulated optical radiation is emitted onto at least one target to be measured. Once the radiation back-scattered to the target is received, the chirp of radiation is modeled by means of a phase function Φ(t) having parameters cj, thereby making description of the deviation of the chirp from the linear profile possible. The parameters used for description are at least partially determined from measurements or are coestimated during numerical signal processing.
摘要:
In a method for generating a synthetic wavelength, particularly for an interferometric distance measuring setup, with a primary laser source defining a primary frequency υ0 and at least a first sideband frequency υ1 of the primary frequency υ0, laser radiation with the first sideband frequency υ1 and a corresponding first wavelength is provided wherein the first sideband frequency υ1 is continuously shifted, particularly by modulating the primary laser source. The synthetic wavelength is generated by combining the first wavelength and a second wavelength which is defined by the primary laser source, particularly by superposition.
摘要:
In a distance-measuring method comprising a distance-measuring apparatus having at least one frequency-modulatable laser source for producing chirped laser radiation. The laser radiation has radiation components with opposite chirp as time dependency of the modulated wavelengths, the simultaneous oppositeness of the frequency curve being realized via an optical delay path (3) for one of the two radiation components. The radiation produced is passed in a measuring interferometer (5) to a target (6) and parallel via a local Oscillator. After reception of the laser radiation scattered back from the target (6) and passed via the local oscillator path, the laser radiation received is converted into signals and the distance to the at least one target (6) is determined from the signals on the basis of interferometric mixing.
摘要:
In a method for generating a synthetic wavelength, particularly for an interferometric distance measuring setup, with a primary laser source defining a primary frequency U0 and at least a first sideband frequency U1 of the primary frequency U1, laser radiation with the first sideband frequency O1 and a corresponding first wavelength is provided wherein the first sideband frequency U1 is continuously shifted, particularly by modulating the primary laser source. The synthetic wavelength is generated by combining the first wavelength and a second wavelength which is defined by the primary laser source, particularly by superposition.
摘要:
The invention relates to a method for interferometric absolute distance measuring by a frequency modulation electromagnetic radiation on at least one measurable target and for subsequently receiving a retransmitted radiation with a heterodyne mixture, wherein the radiation is guided in a parallel direction via a reference interferometric length. In such a way, a first digitized interferogram of the radiation retransmitted by the target and a second digitised interferogram of the radiation guided on the reference length are obtainable at a reception. According to phase progression data of the second interferogram, a virtual interferogram or a phase progression thereof is synthesized and the distance determination is carried out by comparing the progression face data of the first interferogram with the progression face data of the virtual interferogram.
摘要:
In a distance-measuring method, chirped laser radiation with two separable radiation components is emitted to at least one target to be surveyed and via a local oscillator path, the radiation components having an opposite chirp as a time dependency of the modulated wavelengths (λ1, λ2). After reception of the laser radiation scattered back from the target and passed via the local oscillator path, the laser radiation received is converted into signals and the distance to the at least one target is determined from the signals on the basis of interferometric mixing, separation of the radiation components being effected on the basis of their spectral characteristic.
摘要:
In a distance-measuring method, chirped laser radiation with two separable radiation components is emitted to at least one target to be surveyed and via a local oscillator path, the radiation components having an opposite chirp as a time dependency of the modulated wavelengths (λ1, λ2). After reception of the laser radiation scattered back from the target and passed via the local oscillator path, the laser radiation received is converted into signals and the distance to the at least one target is determined from the signals on the basis of interferometric mixing, separation of the radiation components being effected on the basis of their spectral characteristic.