摘要:
The invention relates to a layer structure which is formed between an interconnect and a cathode of a solid oxide fuel cell and can be used for forming a ceramic layer structure between an interconnect and a cathode. In this respect, the interconnect comprises a metal alloy containing chromium. The object of the present invention is to provide a layer structure between an interconnect and a cathode of a solid oxide fuel cell with which a good protective function (from corrosion and from chromium vaporization), a high electrical conductivity and also a good thermal expansion behavior adapted to the materials of an interconnect and of a cathode can be achieved. The layer structure in the green state is formed by a powdery spinel as well as at least one of the below-named metal oxides CuO, NiO, CoOx and MnOx as a sintering additive and at least one powdery perovskite. In this respect, chromium is not contained in any of these chemical compounds and the portion of spinel contained with the metal oxides as a sintering additive is reduced starting from the side facing the interconnect up to the side facing the cathode and the portion of perovskite is reduced starting from the side facing the cathode in the direction of the side facing the interconnect.
摘要:
The invention relates to a layer structure which is formed between an interconnect and a cathode of a solid oxide fuel cell and can be used for forming a ceramic layer structure between an interconnect and a cathode. In this respect, the interconnect comprises a metal alloy containing chromium. The object of the present invention is to provide a layer structure between an interconnect and a cathode of a solid oxide fuel cell with which a good protective function (from corrosion and from chromium vaporization), a high electrical conductivity and also a good thermal expansion behavior adapted to the materials of an interconnect and of a cathode can be achieved. The layer structure in the green state is formed by a powdery spinel as well as at least one of the below-named metal oxides CuO, NiO, CoOx and MnOx as a sintering additive and at least one powdery perovskite. In this respect, chromium is not contained in any of these chemical compounds and the portion of spinel contained with the metal oxides as a sintering additive is reduced starting from the side facing the interconnect up to the side facing the cathode and the portion of perovskite is reduced starting from the side facing the cathode in the direction of the side facing the interconnect.
摘要:
A shaped part that is particularly suited as an interconnector or an end plate for a fuel cell stack, is produced by pressing and sintering a pulverulent starting material. The shaped part has a basic body with a multiplicity of knob-like and/or ridge-like elevations with a height h. Each elevation has two inclined side flanks which lead, proceeding from an end contour of the elevation, via rounded corner portions, with a radius r or r′ directly or via intermediate rectilinear portions, into curved portions, with a radius R or R′, which in turn merge into the surface contour, of the basic body. The rectilinear portions, or, in the case of a direct transition of the rounded corner portions into the curved portions, the tangents at the point of the transition, have an angle of inclination relative to the surface contour, between 95° and 135°.
摘要:
The substrate-supported anode for a high-temperature fuel cell comprises an at least three-layer anode laminate on a metallic substrate. Each of the layers of the anode laminate comprises yttria-stabilized zirconia and nickel, wherein the mean particle size of the nickel decreases from one layer to the next as the distance from the substrate increases. The last layer of the anode laminate, which is provided for contact with the electrolyte, has a root mean square roughness of less than 4 μm. The overall mean pore size of this layer is typically between 0.3 and 1.5 μm. Starting powders having a bimodal particle size distribution of yttria-stabilized zirconia and nickel-containing powder are used at least for the first and second layers of the anode laminate. The mean particle size of the nickel-containing powder is reduced from one layer to the next, whereby it is advantageously no more than 0.5 μm in the last layer of the anode laminate.
摘要:
An interconnector, or bipolar plate, for a high-temperature solid electrolyte fuel cell is composed of a sintered chromium alloy which has sintering pores and contains >90% by weight of Cr, from 3 to 8% by weight of Fe and optionally from 0.001 to 2% by weight of at least one element of the group of rare earth metals. The chromium alloy contains from 0.1 to 2% by weight of Al and the sintering pores are at least partially filled with an oxidic compound containing Al and Cr. The interconnector has a high impermeability to gas and dimensional stability.
摘要:
The invention relates to an assembly comprising an electrode, an electrolyte, and a carrier substrate. The assembly is suitable for a fuel cell. An adaptation layer for adapting the electrolyte to the electrode is disposed between the electrode and the electrolyte, wherein the mean pore size of the adaptation layer is smaller than the mean pore size of the electrode.
摘要:
The substrate-supported anode for a high-temperature fuel cell comprises an at least three-layer anode laminate on a metallic substrate. Each of the layers of the anode laminate comprises yttria-stabilized zirconia and nickel, wherein the mean particle size of the nickel decreases from one layer to the next as the distance from the substrate increases. The last layer of the anode laminate, which is provided for contact with the electrolyte, has a root mean square roughness of less than 4 μm. The overall mean pore size of this layer is typically between 0.3 and 1.5 μm. Starting powders having a bimodal particle size distribution of yttria-stabilized zirconia and nickel-containing powder are used at least for the first and second layers of the anode laminate. The mean particle size of the nickel-containing powder is reduced from one layer to the next, whereby it is advantageously no more than 0.5 μm in the last layer of the anode laminate.
摘要:
An interconnector, or bipolar plate, for a high-temperature solid electrolyte fuel cell is composed of a sintered chromium alloy which has sintering pores and contains >90% by weight of Cr, from 3 to 8% by weight of Fe and optionally from 0.001 to 2% by weight of at least one element of the group of rare earth metals. The chromium alloy contains from 0.1 to 2% by weight of Al and the sintering pores are at least partially filled with an oxidic compound containing Al and Cr. The interconnector has a high impermeability to gas and dimensional stability.
摘要:
A high-temperature fuel cell having a metallic support structure, which has through openings for a gas, for the solid oxide functional layers, a fine-pored intermediate structure made of nickel or a nickel alloy being provided between the coarse-pored support structure and the functional layer facing toward it. The fine-pored intermediate structure is preferably formed by a mesh having a mesh width of a magnitude less than 80 μm, while the support structure is a perforated sheet or a perforated foil. A fuel cell may be produced where the fine-pored intermediate structure is welded to the coarse-pored support structure, and catalytically active anode material is then introduced into the pores of intermediate structure.
摘要:
A powder metallurgical molded part includes a disk or plate-like main body and a row of knob-shaped and/or ridge-shaped elevations in a row direction having a height perpendicular to a main plane of the main body and a cross section with side flanks leading from an outer end contour in height direction of the elevation via rounded corner portions into curved portions with a curve radius. The curve radius merges into the surface contour of the main body and a rectilinear flank portion or tangent of the side flank lying at the point where the rounded corner portion merges into the curved portion is disposed at an angle of inclination to the main plane. At least two different angles of inclination are on the same side of the main body and the at least two different angles of inclination represent at least first and second geometries.