摘要:
A synthetic platelet substitute that interacts with platelets and the (sub)endothelium, comprising: (a) a carrier molecule comprising lipidic particles with a cross-linked surface mesh, the lipidic particles comprising: an inner lipidic particle of pharmaceutically acceptable particle-forming lipids; hydrophilic polymer chains linked to the surface of the lipidic particle, the hydrophilic polymer chains comprising a crosslinkable end group at free ends thereof; and cross-linker groups linking the end groups of the hydrophilic polymer chains to form the cross-linked surface mesh; and (b) at least one receptor molecule attached to the surface of the carrier molecule. The receptor molecule can be a peptide moiety specific for ligands involved in platelet function.
摘要:
A synthetic platelet substitute that interacts with platelets and the (sub)endothelium, comprising: (a) a carrier molecule comprising lipidic particles with a cross-linked surface mesh, the lipidic particles comprising: an inner lipidic particle of pharmaceutically acceptable particle-forming lipids; hydrophilic polymer chains linked to the surface of the lipidic particle, the hydrophilic polymer chains comprising a crosslinkable end group at free ends thereof; and cross-linker groups linking the end groups of the hydrophilic polymer chains to form the cross-linked surface mesh; and (b) at least one receptor molecule attached to the surface of the carrier molecule. The receptor molecule can be a peptide moiety specific for ligands involved in platelet function.
摘要:
A method for producing a composition of lipidic particles coated with a cross-linked surface mesh, the method comprising the steps of: (i) preparing lipidic particles comprising pharmaceutically acceptable lipids, (ii) binding hydrophilic polymer chains to the surface of the lipidic particles, and (iii) cross-linking the hydrophilic polymer chains to form the cross-linked surface mesh. Pharmaceutical compositions comprising surface modified lipidic particles prepared according to this method are also described. The lipidic particles resist fusion with red blood cells and platelets in vitro, and are amenable to further derivatization by targeting molecules for controlled release of component and contents, thus providing a new generation of drug carrier systems.
摘要:
It is provided mimotope receptors and inhibitors that employ peptide mimics that mimic the shape and function of natural receptors and ligands, thus providing synthetic binding sites for ligands and receptors. Receptor mimics can be attached to carriers, such as liposomes, to act as synthetic platelets, for example, by providing multiple binding sites for binding to other (natural or synthetic) platelets or to the endothelium. Synthetic platelets would have virtually limitless shelf life and would not require disease screening prior to transfusion, thereby providing a solution to the perpetual platelet shortages, as well as the safety and storage issues associated with natural blood platelets.
摘要:
It is provided mimotope receptors and inhibitors that employ peptide mimics that mimic the shape and function of natural receptors and ligands, thus providing synthetic binding sites for ligands and receptors. Receptor mimics can be attached to carriers, such as liposomes, to act as synthetic platelets, for example, by providing multiple binding sites for binding to other (natural or synthetic) platelets or to the endothelium. Synthetic platelets would have virtually limitless shelf life and would not require disease screening prior to transfusion, thereby providing a solution to the perpetual platelet shortages, as well as the safety and storage issues associated with natural blood platelets.
摘要:
Mimotope receptors and inhibitors employ peptide mimics that mimic the shape and function of natural receptors and ligands, thus providing synthetic binding sites for ligands and receptors. Receptor mimics can be attached to carriers, such as liposomes, to act as synthetic platelets, for example, by providing binding sites for binding to other (natural or synthetic) platelets or to the endothelium. Synthetic platelets would have virtually limitless shelf life and would not require disease screening prior to transfusion, thereby providing a solution to the perpetual platelet shortages, as well as the safety and storage issues associated with natural blood platelets. Mimotope inhibitors (either free-molecule receptors or ligands) can act as antithrombotics by inhibiting platelet-platelet or platelet-endothelium interactions. Ligand mimics are preferably D-peptides that resist proteolytic degradation. Furthermore, these ligand mimics can also be attached to carriers for resisting excretion, thus forming the basis for a new class of antithrombotic drugs.
摘要:
A method for producing a composition of lipidic particles coated with a cross-linked surface mesh, the method comprising the steps of: (i) preparing lipidic particles comprising pharmaceutically acceptable lipids, (ii) binding hydrophilic polymer chains to the surface of the lipidic particles, and (iii) cross-linking the hydrophilic polymer chains to form the cross-linked surface mesh. Pharmaceutical compositions comprising surface modified lipidic particles prepared according to this method are also described. The lipidic particles resist fusion with red blood cells and platelets in vitro, and are amenable to further derivatization by targeting molecules for controlled release of component and contents, thus providing a new generation of drug carrier systems.