摘要:
Methods of forming materials containing precursors to electrically conductive polymers and electrically conductive polymers are described which have a high degree of crystallinity. The high degree of crystallinity is achieved by preparing the materials under conditions which provide a high degree of mobility to the polymer molecules permitting them to associate with one another to form a crystalline state. High levels of electrical conductivity are achieved in in the electrically conductive materials without stretch orienting the material. The enhanced electrical conductivity is isotropic as compared to a stretch oriented film which has isotropic electrical conductivity. In the preferred embodiment, additives are added to a solution containing a solvent and the precursor or electrically conductive polymer. The additives are preferably plasticizer of diluents. As the solvent is removed the material dries and contains a higher degree of crystallinity than in the absence of the additive.
摘要:
Polycrystalline materials containing crystallies of precursors to electrically conductive polymers and electrically conductive polymers are described which have an adjustable high degree of crystallinity. The intersticial regions between the crystallites contains amorphous material containing precursors to electrically conductive polymers and/or electrically conductive polymers. The degree of crystallinity is achieved by preparing the materials under conditions which provide a high degree of mobility to the polymer molecules permitting them to associate with one another to form a crystalline state. This is preferable achieved by including additives, such as plasticizers and diluents, to the solution from which the polycrystalline material is formed. The morphology of the polycrystalline material is adjustable to modify the properties of the material such as the degree of crystallinity, crystal grain size, glass transition temperature, thermal coefficient of expansion and degree of electrical conductivity. High levels of electrical conductivity are achieved in in the electrically conductive polycrystalline materials without stretch orienting the material. The enhanced electrical conductivity is isotropic as compared to a stretch oriented film which has isotropic electrical conductivity.
摘要:
Materials containing precursors to electrically conductive polymers and electrically conductive polymers are described which have a high degree of crystallinity. The high degree of crystallinity is achieved by preparing the materials under conditions which provide a high degree of mobility to the polymer molecules permitting them to associate with one another to form a crystalline state. High levels of electrical conductivity are achieved in the electrically conductive materials without stretch orienting the material. The enhanced electrical conductivity is isotropic as compared to a stretch oriental film which has isotropic electrical conductivity.
摘要:
Polycrystalline materials containing crystallies of precursors to electrically conductive polymers and electrically conductive polymers are described which have an adjustable high degree of crystallinity. The intersticial regions between the crystallites contains amorphous material containing precursors to electrically conductive polymers and/or electrically conductive polymers. The degree of crystallinity is achieved by preparing the materials under conditions which provide a high degree of mobility to the polymer molecules permitting them to associate with one another to form a crystalline state. This is preferable achieved by including additives, such as plasticizers and diluents, to the solution from which the polycrystalline material is formed. The morphology of the polycrystalline material is adjustable to modify the properties of the material such as the degree of crystallinity, crystal grain size, glass transition temperature, thermal coefficient of expansion and degree of electrical conductivity. High levels of electrical conductivity are achieved in in the electrically conductive polycrystalline materials without stretch orienting the material. The enhanced electrical conductivity is isotropic as compared to a stretch oriented film which has isotropic electrical conductivity.
摘要:
Materials containing precursors to electrically conductive polymers and electrically conductive polymers are described which have a high degree of crystallinity. The high degree of crystallinity is achieved by preparing the materials under conditions which provide a high degree of mobility to the polymer molecules permitting them to associate with one another to form a crystalline state. High levels of electrical conductivity are achieved in in the electrically conductive materials without stretch orienting the material. The enhanced electrical conductivity is isotropic as compared to a stretch oriented film which has isotropic electrical conductivity.
摘要:
Methods of forming materials containing precursors to electrically conductive polymers and electrically conductive polymers are described which have a high degree of crystallinity. The high degree of crystallinity is achieved by preparing the materials under conditions which provide a high degree of mobility to the polymer molecules permitting them to associate with one another to form a crystalline state. High levels of electrical conductivity are achieved in in the electrically conductive materials without stretch orienting the material. The enhanced electrical conductivity is isotropic as compared to a stretch oriented film which has isotropic electrical conductivity. In the preferred embodiment, additives are added to a solution containing a solvent and the precursor or electrically conductive polymer. The additives are preferably plasticizer of diluents. As the solvent is removed the material dries and contains a higher degree of crystallinity than in the absence of the additive.
摘要:
Polycrystalline materials containing crystallites of precursors to electrically conductive polymers and electrically conductive polymers are described which have an adjustable high degree of crystallinity. The intersticial regions between the crystallites contains amorphous material containing precursors to electrically conductive polymers and/or electrically conductive polymers. The degree of crystallinity is achieved by preparing the materials under conditions which provide a high degree of mobility to the polymer molecules permitting them to associate with one another to form a crystalline state. This is preferable achieved by including additives, such as plasticizers and diluents, to the solution from which the polycrystalline material is formed. The morphology of the polycrystalline material is adjustable to modify the properties of the material such as the degree of crystallinity, crystal grain size, glass transition temperature, thermal coefficient of expansion and degree of electrical conductivity. High levels of electrical conductivity are achieved in the electrically conductive polycrystalline materials without stretch orienting the material. The enhanced electrical conductivity is isotropic as compared to a stretch oriented film which has isotropic electrical conductivity.
摘要:
Methods of forming materials containing precursors to electrically conductive polymers and electrically conductive polymers are described which have a high degree of crystallinity. The high degree of crystallinity is achieved by preparing the materials under conditions which provide a high degree of mobility to the polymer molecules permitting them to associate with one another to form a crystalline state. High levels of electrical conductivity are achieved in in the electrically conductive materials without stretch orienting the material. The enhanced electrical conductivity is isotropic as compared to a stretch oriented film which has isotropic electrical conductivity. In the preferred embodiment, additives are added to a solution containing a solvent and the precursor or electrically conductive polymer. The additives are preferably plasticizer of diluents. As the solvent is removed the material dries and contains a higher degree of crystallinity than in the absence of the additive.
摘要:
Methods of forming materials containing precursors to electrically conductive polymers and electrically conductive polymers are described which have a high degree of crystallinity. The high degree of crystallinity is achieved by preparing the materials under conditions which provide a high degree of mobility to the polymer molecules permitting them to associate with one another to form a crystalline state. High levels of electrical conductivity are achieved in in the electrically conductive materials without stretch orienting the material. The enhanced electrical conductivity is isotropic as compared to a stretch oriented film which has isotropic electrical conductivity. In the preferred embodiment, additives are added to a solution containing a solvent and the precursor or electrically conductive polymer. The additives are preferably plasticizer of diluents. As the solvent is removed the material dries and contains a higher degree of crystallinity than in the absence of the additive.
摘要:
Electrostatic discharge protection or electromagnetic interference shielding is provided by applying a composition comprising a thermoset or thermoplastic polymeric matrix, and a conductive filler component, where said filler component comprises electrically conductive particles and at least one conducting polymer to a dielectric substrate.