摘要:
Spacers and turbines are provided. In an embodiment, and by way of example only, a spacer includes a strip, a first retention flange, and a second retention flange. The strip has a first edge, a second edge, and an impingement surface, and the impingement surface extends axially along the strip between the first edge and the second edge and is substantially flat. The first retention flange is recessed relative to the impingement surface and extends away from the first edge of the strip. The second retention flange is recessed relative to the impingement surface and extends away from the second edge of the strip.
摘要:
Spacers and turbines are provided. In an embodiment, and by way of example only, a spacer includes a strip, a first retention flange, and a second retention flange. The strip has a first edge, a second edge, and an impingement surface, and the impingement surface extends axially along the strip between the first edge and the second edge and is substantially flat. The first retention flange is recessed relative to the impingement surface and extends away from the first edge of the strip. The second retention flange is recessed relative to the impingement surface and extends away from the second edge of the strip
摘要:
A robust multiple-walled, multi-pass, high cooling effectiveness cooled turbine vane or blade designed for ease of manufacturability, minimizes cooling flows on highly loaded turbine rotors. The vane or blade design allows the turbine inlet temperature to increase over current technology levels while simultaneously reducing turbine cooling to low levels. A multi-wall cooling system is described, which meets the inherent conflict to maximize the flow area of the cooling passages while retaining the required section thickness to meet the structural requirements. Independent cooling circuits for the vane or blade's pressure and suction surfaces allow the cooling of the airfoil surfaces to be tailored to specific heat load distributions (that is, the pressure surface circuit is an independent forward flowing serpentine while the suction surface is an independent rearward flowing serpentine). The cooling air for the independent circuits is supplied through separate passages at the base of the vane or blade. The cooling air follows intricate passages to feed the serpentine thin outer wall passages, which incorporate pin fins, turbulators, etc. These passages, while satisfying the aero/thermal/stress requirements, are of a manufacturing configuration that may be cast with single crystal materials using conventional casting techniques.
摘要:
A vibration isolator assembly includes a bellows component, a piston component, a shaft component, and a housing component, wherein at least one of the bellows component, the piston component, the shaft component, and the housing component is formed using additive manufacturing techniques.
摘要:
A turbine component for a turbine of an engine is provided. The turbine component includes a blade portion of a first material; and an attachment portion coupled to the blade portion, the attachment portion being a second material.
摘要:
A method is provided for manufacturing an engine component. The method includes providing a structural bridge device on a base block; forming a component portion on the structural bridge device with an additive manufacturing technique; removing the component portion from the base block and the structural bridge device; and finishing the component portion to form the engine component.
摘要:
A gas turbine engine assembly includes a housing including an annular duct wall that at least partially defines a mainstream hot gas flow path configured to receive mainstream hot gas flow. The assembly further includes a stator assembly including a stator vane that extends into the mainstream hot gas flow path and a turbine rotor assembly downstream of the stator assembly that includes a turbine disk and a turbine blade extending from the turbine disk into the mainstream hot gas flow path. The stator assembly and turbine assembly define a turbine disk cavity, and the turbine disk cavity includes a recirculation cavity configured to recirculate gas ingested from the mainstream hot gas flow path back into the mainstream hot gas flow path.
摘要:
A turbine blade assembly is provided. The turbine blade assembly comprises a turbine blade comprising a cavity, and a blade platform supporting the turbine blade, the cavity extending into the blade platform. The blade platform comprises an upper surface adjacent the turbine blade and a lower surface comprising a first rib, the cavity extending into the first rib, the first rib coupled to the lower surface, tapering as it extends away from the turbine blade, and comprising a first port extending from the cavity to the upper surface.
摘要:
An impeller or axial stage compressor disk backface shroud for use with a gas turbine engine is disclosed. The backface shroud includes, but is not limited to, a substantially funnel shaped body having a surface. The substantially funnel shaped body is configured to be statically mounted to the gas turbine engine substantially coaxially with the impeller or axial stage compressor disk. The surface and a backface of the impeller or axial stage compressor disk form a cavity that guides an airflow portion to a turbine when the substantially funnel shaped body is mounted coaxially with the impeller or axial stage compressor disk and axially spaced apart therefrom. The airflow portion has a tangential velocity and a recessed groove in the surface of the backface shroud is oriented generally transversely to the tangential velocity to at least partially interfere with the airflow portion, thus affecting static pressure in the cavity.
摘要:
A method is provided that includes depositing metal powder over a seed crystal having a predetermined primary orientation, scanning an initial pattern into the metal powder to melt or sinter the deposited metal powder, and re-scanning the initial pattern to re-melt the scanned metal powder and form an initial layer having the predetermined primary orientation. The method further includes depositing additional metal powder over the initial layer, scanning an additional pattern into the additional metal powder to melt or sinter at least a portion of the additional metal powder, re-scanning the additional pattern to re-melt a portion of the initial layer and the scanned deposited additional metal powder to form a successive layer having the predetermined primary orientation, and repeating the steps of depositing additional metal powder, scanning the additional pattern, and re-scanning the additional pattern, until a final shape of the component is achieved.