摘要:
Materials comprising emissive arylimino-isoindoline complexes comprising 1,3-bis(2-pyridylimino)isoindoline (BPI) transition metal and lanthanide complexes as described. Organic light emitting devices comprising these complexes are also described.
摘要:
The present invention provides a new class of excited state intramolecular charge transfer (ESIPT) dye compounds based on mono or dihydroxy substituted 1,3-bisiminoisoindole motif and metal complexes containing such compounds as ligands. The present invention also provides OLEDs containing the compound and/or metal complex as the emissive material.
摘要:
Certain iridium compounds which may comprise an iridium(III)-ligand complex having the general formula: (C^N)2—Ir—(N^N). (C^N) and (N^N) may each represent a ligand coordinated to an iridium atom. The iridium compounds may have a primary phosphorescent photoluminescence peak wavelength in the near-infrared (IR) range. Also, organic devices that use certain iridium compounds. The organic device may comprise an organic layer and the organic layer may comprise any of the iridium compounds disclosed herein. Also, organic devices that use certain metalloporphyrin compounds. The metalloporphyrin compounds may comprise a core porphyrin structure with four pyrrole rings. The metalloporphyrin compounds may have a primary phosphorescent photoluminescence peak wavelength in the near-IR range.
摘要:
Certain iridium compounds which may comprise an iridium(III)-ligand complex having the general formula: (ĈN)2—Ir—(N̂N). (ĈN) and (N̂N) may each represent a ligand coordinated to an iridium atom. The iridium compounds may have a primary phosphorescent photoluminescence peak wavelength in the near-infrared (IR) range. Also, organic devices that use certain iridium compounds. The organic device may comprise an organic layer and the organic layer may comprise any of the iridium compounds disclosed herein. Also, organic devices that use certain metalloporphyrin compounds. The metalloporphyrin compounds may comprise a core porphyrin structure with four pyrrole rings. The metalloporphyrin compounds may have a primary phosphorescent photoluminescence peak wavelength in the near-IR range.
摘要:
Certain iridium compounds which may comprise an iridium(III)-ligand complex having the general formula: (ĈN)2—Ir—(N̂N). (ĈN) and (N̂N) may each represent a ligand coordinated to an iridium atom. The iridium compounds may have a primary phosphorescent photoluminescence peak wavelength in the near-infrared (IR) range. Also, organic devices that use certain iridium compounds. The organic device may comprise an organic layer and the organic layer may comprise any of the iridium compounds disclosed herein. Also, organic devices that use certain metalloporphyrin compounds. The metalloporphyrin compounds may comprise a core porphyrin structure with four pyrrole rings. The metalloporphyrin compounds may have a primary phosphorescent photoluminescence peak wavelength in the near-IR range.
摘要:
Certain iridium compounds which may comprise an iridium(III)-ligand complex having the general formula: (C^N)2—Ir—(N^N). (C^N) and (N^N) may each represent a ligand coordinated to an iridium atom. The iridium compounds may have a primary phosphorescent photoluminescence peak wavelength in the near-infrared (IR) range. Also, organic devices that use certain iridium compounds. The organic device may comprise an organic layer and the organic layer may comprise any of the iridium compounds disclosed herein. Also, organic devices that use certain metalloporphyrin compounds. The metalloporphyrin compounds may comprise a core porphyrin structure with four pyrrole rings. The metalloporphyrin compounds may have a primary phosphorescent photoluminescence peak wavelength in the near-IR range.
摘要:
Porphyrin compounds are provided. The compounds may further comprise a fused polycyclic aromatic hydrocarbon or a fused heterocyclic aromatic. Fused polycyclic aromatic hydrocarbon s and fused heterocyclic aromatics may extend and broaden absorption, and modify the solubility, crystallinity, and film-forming properties of the porphyrin compounds. Additionally, devices comprising porphyrin compounds are also provided. The porphyrin compounds may be used in a donor/acceptor configuration with compounds, such as C60.
摘要:
Porphyrin compounds are provided. The compounds may further comprise a fused polycyclic aromatic hydrocarbon or a fused heterocyclic aromatic. Fused polycyclic aromatic hydrocarbon s and fused heterocyclic aromatics may extend and broaden absorption, and modify the solubility, crystallinity, and film-forming properties of the porphyrin compounds. Additionally, devices comprising porphyrin compounds are also provided. The porphyrin compounds may be used in a donor/acceptor configuration with compounds, such as C60.
摘要:
A compound that can be used as a donor material in organic photovoltaic devices comprising a non-activated porphyrin fused with one or more non-activated polycyclic aromatic rings or one or more non-activated, heterocyclic rings can be obtained by a thermal fusion process. By heating the reaction mixture of non-activated porphyrins with non-activated polycyclic aromatic rings or heterocyclic rings to a fusion temperature and holding for a predetermined time, fusion of one or more polycyclic rings or heterocyclic rings to the non-activated porphyrin core in meso,β fashion is achieved, resulting in hybrid structures containing a distorted porphyrin ring with annulated aromatic rings. The porphyrin core can be olygoporphyrins.
摘要:
A compound that can be used as a donor material in organic photovoltaic devices comprising a non-activated porphyrin fused with one or more non-activated polycyclic aromatic rings or one or more non-activated heterocyclic rings can be obtained by a thermal fusion process. The compounds can include structures of Formula I: By heating the reaction mixture of non-activated porphyrins with non-activated polycyclic aromatic rings or heterocyclic rings to a fusion temperature and holding for a predetermined time, fusion of one or more polycyclic rings or heterocyclic rings to the non-activated porphyrin core in meso,β fashion is achieved resulting in hybrid structures containing a distorted porphyrin ring with annulated aromatic rings. The porphyrin core can be olygoporphyrins.