摘要:
The present invention provides a novel process for preparing a catalyst, preferably free of electron donor, useful in gas phase polymerization of olefins having a broad polydispersity.
摘要:
The present invention provides a novel process for preparing a catalyst, preferably free of electron donor, useful in gas phase polymerization of olefins having a broad polydispersity.
摘要:
Polyethylene films having a good balance of optical and mechanical properties are disclosed. The films are derived from ethylene copolymer compositions made with a suitably substituted phosphinimine catalyst. The ethylene copolymers have very narrow molecular weight distributions and broadened comonomer distributions.
摘要:
Polyethylene films having a good balance of optical and mechanical properties are disclosed. The films are derived from ethylene copolymer compositions made with a suitably substituted phosphinimine catalyst. The ethylene copolymers have very narrow molecular weight distributions and broadened comonomer distributions.
摘要:
A catalyst system comprises an organometallic complex of a group 4 metal having a ketimide ligand. The organometallic complex preferably also contains a cyclic ligand which forms a delocalized pi-bond with the metal (such as a cyclopentadienyltype ligand). Preferred organometallic complexes may be activated with a so-called “substantially non coordinating anion” to form a low cost cocatalyst system which is excellent for the preparation of olefin copolymers having both high molecular weight and very low density.
摘要:
Supported catalyst system for the polymerization of olefins, having at least two different monocyclopentadienyl transition metal compounds, one or more activators including an ionic compound having (i) a cation and (ii) an anion having up to 100 non-hydrogen atoms and the anion containing at least one substituent comprising a moiety having an active hydrogen, and one or more support materials. The supported “mixed or dual site” catalyst systems having different monocyclopentadienyl catalysts when activated by specific ionic activators lead to catalyst systems showing an improved balance of properties which may be used to prepare LLDPE polymers having broad melt flow ratios.
摘要:
The use of high activity “Single Site” polymerization catalysts often causes the fouling of polymerization reactors. The problem is particularly acute with gas phase polymerizations. While not wishing to be bound by theory it is believed that the fouling is initiated by the buildup of static charges in the reactor. The use of anti-static agents mitigates this problem, but typical antistatic agents contain polar species, which can deactivate the polymerization catalyst. We have now discovered that the use of a porous metal oxide support allows large levels of a selected antistatic agent to be used in a manner that reduces static/fouling problems in highly active polymerization catalysts.
摘要:
A slurry polymerization process uses an unsupported catalyst component which is an organometallic complex having a phosphinimine ligand and a cyclopentadienyl-type ligand. The use of the unsupported catalyst component allows simple, inexpensive catalyst addition techniques to be used in a slurry polymerization process. The catalyst component is highly active for ethylene (co)polymerization in the process of this invention.
摘要:
A supported catalyst for olefin polymerization comprises a selected ionic activator, a selected organometallic catalyst and a support material. The selected activator must contain an active hydrogen moeity. The organometallic catalyst is characterized by having a phosphinimine ligand and a substituted cyclopentadienyl ligand (which contains from 7 to 30 carbon atoms). The supported catalyst exhibits excellent activity in gas phase olefin polymerizations and may be used under substantially “non-fouling” polymerization conditions.
摘要:
The use of high activity “Single Site” polymerization catalysts often causes the fouling of polymerization reactors. The problem is particularly acute with gas phase polymerizations. While not wishing to be bound by theory it is believed that the fouling is initiated by the buildup of static charges in the reactor. The use of anti-static agents mitigates this problem, but typical antistatic agents contain polar species, which can deactivate the polymerization catalyst. We have now discovered that the use of a porous metal oxide support allows large levels of a selected antistatic agent to be used in a manner that reduces static/fouling problems in highly active polymerization catalysts.