摘要:
An illumination system for a microlithographic projection exposure apparatus comprises a masking device and a masking objective which projects the masking device onto an image plane. The illumination system further includes an optical correction element having a surface that is either aspherically shaped or supports diffractive structures that have at least substantially the effect of an aspherical surface. This surface is arranged at least approximately in a field plane which precedes the image plane of the masking objective The aspherically acting surface is designed such that a principal ray distribution generated by the illumination system in the image plane matches a principal ray distribution required by a projection objective.
摘要:
An illumination system of a microlithographic exposure apparatus comprises a condenser for transforming a pupil plane into a field plane. The condenser has a lens group that contains a plurality of consecutive lenses. These lenses are arranged such that a light bundle focused by the condenser on an on-axis field point converges within each lens of the lens group. At least one lens of the lens group has a concave surface. The illumination system may further comprise a field stop objective that at least partly corrects a residual pupil aberration of the condenser.
摘要:
A projection exposure apparatus for the exposure of a radiation-sensitive substrate arranged in the region of an image surface of a projection objective with at least one image of a pattern of a mask that is arranged in the region of an object surface of the projection objective has a light source for emitting ultraviolet light from a wavelength band having a bandwidth Δλ>10 pm around a central operating wavelength λ>200 nm; an illumination system for receiving the light from the light source and for directing illumination radiation onto the pattern of the mask; and a projection objective for the imaging of the structure of the mask onto a light-sensitive substrate. The projection objective is a catadioptric projection objective having at least one concave mirror arranged in a region of a pupil surface of the projection objective, and a negative group having at least one negative lens arranged in direct proximity to the concave mirror in a region near the pupil surface, where a marginal ray height (MRH) of the imaging is greater than a chief ray height (CRH).
摘要:
In a method of manufacturing projection objectives including defining an initial design for a projection objective and optimizing the design using a merit function, a set of related projection objectives including a first projection objective and at least one second projection objective is defined. Further, a plurality of merit function components, each of which reflects a particular quality parameter, is defined. One of these merit function components defines a common module requirement requiring that the first projection objective and the second projection objective each include at least one common optical module that is constructed to be substantially identical for the first and the second projection objective. The method results in a set of projection objectives having at least one common optical module. Employing the method in the manufacturing of complex projection objectives, such as projection objectives for microlithography, facilitates the manufacturing process and allows substantial cost savings.
摘要:
The invention features a system for microlithography that includes a mercury light source configured to emit radiation at multiple mercury emission lines, a projection objective positioned to receive radiation emitted by the mercury light source, and a stage configured to position a wafer relative to the projection objective. During operation, the projection objective directs radiation from the light source to the wafer, where the radiation at the wafer includes energy from more than one of the emission lines. Optical lens systems for use in said projection objective comprise four lens groups, each having two lenses comprising silica, the first and second lens groups on one hand and the third and fourth lens groups on the other hand are positioned symmetrically with respect to a plane perpendicular to the optical axis of said lens system.
摘要:
The invention relates to a projection objective (6), in particular for applications in microlithography, serving to project an image of an object (3) arranged in an object plane (4) onto a substrate (18) arranged in an image plane (7). The projection objective (6) has an object-side-oriented part (10) which is arranged adjacent to the object plane (4) and includes a plurality of optical elements, and it also has an image-side-oriented part (11) of the objective which is arranged adjacent to the image plane (7) and includes a free space (16) serving to receive a fluid (13) and further includes at least a part of an optical end-position element (14) serving to delimit the free space (16) towards the object side. The projection objective (6) is operable in different modes of operation in which the free space (16) is filled with fluids (13) that differ in their respective indices of refraction.
摘要:
An illumination system (12) of a microlithographic exposure apparatus (10) comprises a condenser (601; 602; 603; 604; 605; 606) for transforming a pupil plane (54) into a field plane (62). The condenser has a lens group (L14, L15, L16, L17; L24, L25, L26, L27, L28; L34, L35, L36, L37; L44, L45, L46; L53, L54, L55) that contains a plurality of consecutive lenses. These lenses are arranged such that a light bundle (70) focused by the condenser (601; 602; 603; 604; 605) on an on-axis field point (72) converges within each lens of the lens group. At least one lens (L15, L16, L17; L25, L26; L34, L44, L45; L54) of the lens group has a concave surface. The illumination system may further comprise a field stop objective (66; 666, 666′) that at least partly corrects a residual pupil aberration of the condenser (601; 602; 603; 604; 605; 606).
摘要翻译:微光刻曝光设备(10)的照明系统(12)包括用于将光瞳平面(54)变换成场平面(62)的冷凝器(601; 602; 603; 604; 605; 606)。 冷凝器具有透镜组(L 14,L 15,L 16,L 17; L 24,L 25,L 26,L 27,L 28; L 34,L 35,L 36,L 37; L 44,L 45,L 46; L 53,L 54,L 55)。 这些透镜被布置为使得在轴上场点(72)上由聚光器(601; 602; 603; 604; 605)聚焦的光束(70)会聚在透镜组的每个透镜内。 透镜组的至少一个透镜(L 15,L 16,L 17; L 25,L 26; L 34,L 44,L 45; L 54)具有凹面。 照明系统还可以包括至少部分校正冷凝器(601; 602; 603; 604; 605; 606)的残余光瞳像差的场停止物镜(66; 666,666')。
摘要:
A projection exposure apparatus for the exposure of a radiation-sensitive substrate arranged in the region of an image surface of a projection objective with at least one image of a pattern of a mask that is arranged in the region of an object surface of the projection objective has a light source for emitting ultraviolet light from a wavelength band having a bandwidth Δλ>10 pm around a central operating wavelength λ>200 nm; an illumination system for receiving the light from the light source and for directing illumination radiation onto the pattern of the mask; and a projection objective for the imaging of the structure of the mask onto a light-sensitive substrate. The projection objective is a catadioptric projection objective having at least one concave mirror arranged in a region of a pupil surface of the projection objective, and a negative group having at least one negative lens arranged in direct proximity to the concave mirror in a region near the pupil surface, where a marginal ray height (MRH) of the imaging is greater than a chief ray height (CRH).
摘要:
A reduction projection objective for projection lithography has a plurality of optical elements configured to image an effective object field arranged in an object surface of the projection objective into an effective image field arranged in an image surface of the projection objective at a reducing magnification ratio |β|
摘要:
A reduction projection objective for projection lithography has a plurality of optical elements configured to image an effective object field arranged in an object surface of the projection objective into an effective image field arranged in an image surface of the projection objective at a reducing magnification ratio |β|