摘要:
The present invention relates to an illumination system for microlithography, especially for wavelengths ≦193 nm, especially preferably for EUV lithography for illuminating a field in a field plane with at least one optical integrator which splits up a light bundle emitted by a light source into a plurality of light channels each having a light intensity, characterized in that a filter is provided in the light path from the light source to the field plane, with the filter comprising filter elements which are configured in such a way that the light intensity of at least one light channel is reduced in the light path after the filter element.
摘要:
There is provided a projection exposure system operable in a scanning mode along a scanning direction. The projection exposure system includes a collector that receives light having a wavelength ≦193 nm and illuminates a region in a plane. The plane is defined by a local coordinate system having a y-direction parallel to the scanning direction and an x-direction perpendicular to the scanning direction. The collector includes (a) a first mirror shell, (b) a second mirror shell within the first mirror shell, and (c) a fastening device for fastening the first and second mirror shells. The mirror shells are substantially rotational symmetric about a common rotational axis. The fastening device has a support spoke that extends in a radial direction of the mirror shells, and the support spoke, when projected into the plane, yields a projection that is non-parallel to the y-direction.
摘要:
An optical imaging system for a microlithography projection exposure system is used for imaging an object field arranged in an object plane of the imaging system into an image field arranged in an image plane of the imaging system. A projection objective or a relay objective to be used in the illumination system can be involved, in particular. The imaging system has a plurality of lenses that are arranged between the object plane and the image plane and in each case have a first lens surface and a second lens surface. At least one of the lenses is a double aspheric lens where the first lens surface and the second lens surface is an aspheric surface. Lenses of good quality that have the action of an asphere with very strong deformation can be produced in the case of double aspheric lenses with an acceptable outlay as regards the surface processing and testing of the lens surfaces.
摘要:
There is provided a projection exposure system operable in a scanning mode along a scanning direction. The projection exposure system includes a collector that receives light having a wavelength 193 nm and illuminates a region in a plane. The plane is defined by a local coordinate system having a y-direction parallel to the scanning direction and an x-direction perpendicular to the scanning direction. The collector includes (a) a first mirror shell, (b) a second mirror shell within the first mirror shell, and (c) a fastening device for fastening the first and second mirror shells. The mirror shells are substantially rotational symmetric about a common rotational axis. The fastening device has a support spoke that extends in a radial direction of the mirror shells, and the support spoke, when projected into the plane, yields a projection that is non-parallel to the y-direction.
摘要:
There is provided an illumination system for scannertype microlithography along a scanning direction with a light source emitting a wavelength ≦193 nm. The illumination system includes a plurality of raster elements. The plurality of raster elements is imaged into an image plane of the illumination system to produce a plurality of images being partially superimposed on a field in the image plane. The field defines a non-rectangular intensity profile in the scanning direction.
摘要:
The present invention relates to an illumination system for microlithography, especially for wavelengths ≦193 nm, especially preferably for EUV lithography for illuminating a field in a field plane with at least one optical integrator which splits up a light bundle emitted by a light source into a plurality of light channels each having a light intensity,characterized in thata filter is provided in the light path from the light source to the field plane, with the filter comprising filter elements which are configured in such a way that the light intensity of at least one light channel is reduced in the light path after the filter element.
摘要:
There is provided an illumination system. the illumination system includes (a) a source of light having a wavelength of less than or equal to 193 nm, and (b) an optical element in a path of the light, having a first raster element, a second raster element, a third raster element and a fourth raster element situated thereon. The second raster element is adjacent to the first raster element, and located a first distance from the first raster element. The fourth raster element is adjacent to the third raster element, and located a second distance from the third raster element. The second distance is different from the first distance.
摘要:
There is provided an illumination system for scannertype microlithography along a scanning direction with a light source emitting a wavelength ≦193 nm. The illumination system includes a plurality of raster elements. The plurality of raster elements is imaged into an image plane of the illumination system to produce a plurality of images being partially superimposed on a field in the image plane. The field defines a non-rectangular intensity profile in the scanning direction.
摘要:
There is provided an optical system including an optical element having a first used area and a second used area on which impinge rays of a light bundle, and a device for moving the optical element between a first position and a second position. The light bundle impinges on the first used area when the optical element is in the first position, and light bundle impinges on the second used area when the optical element is in the second position.
摘要:
The invention concerns an optical instrument for imaging fluorescence signals from an arrangement of a plurality of individual detection sites, for example the wells of a microtitre plate. In order to improve the light yield of the fluorescence excitation with excitation light as well as the light yield of the detection of the fluorescence signals, an objective array is provided which is arranged in the beam path between the field lens and the detection sites and comprises a field lens array with field lens array elements and a pupil lens array with pupil lens array elements. In order to improve the channel separation and suppress interfering light the objective array can comprise a diaphragm array with in each case two diaphragm openings per detection site.