Abstract:
A coupling unit that couples at least two pins of an ATE (Automated Test Equipment) to a pin of a device under test includes an ATE interface for receiving a plurality of first stimulus signals from selected ATE-pins and/or for sending a plurality of first response signals to the selected ATE-pins, a DUT interface for sending a second stimulus signal to the DUT-pin and/or for receiving a second response signal from the DUT-pin, and a multiplexer circuit for serializing data of the plurality of first stimulus signals into the second stimulus signal and/or a de-multiplexer circuit adapted for parallelizing data of the second response signal into the plurality of first response signals.
Abstract:
A coupling unit that couples at least two pins of an ATE (Automated Test Equipment) to a pin of a device under test includes an ATE interface for receiving a plurality of first stimulus signals from selected ATE-pins and/or for sending a plurality of first response signals to the selected ATE-pins, a DUT interface for sending a second stimulus signal to the DUT-pin and/or for receiving a second response signal from the DUT-pin, and a multiplexer circuit for serializing data of the plurality of first stimulus signals into the second stimulus signal and/or a de-multiplexer circuit adapted for parallelizing data of the second response signal into the plurality of first response signals.
Abstract:
There is provided a method of source synchronous sampling, where a first clock signal of a first unit is synchronized to a second signal received from a second unit. The method includes determining a timing control signal on the base of the first clock signal and the second signal, generating an adjusted clock signal by adjusting the timing of the first clock signal corresponding to the timing control signal, and using the adjusted clock signal for sampling a signal received from the second unit. The second signal is a clock signal received from the second unit, the adjusted clock signal is used for sampling this clock signal itself, and a corresponding sampled clock signal is supervised to show proper clock functionality.
Abstract:
A method for testing electronic devices involves receiving a stimulus signal for testing a device; changing an operating temperature of at least a component of an electrical filter while maintaining settings of the electrical filter, thereby altering the stimulus signal as the stimulus signal passes through the electrical filter, to create an altered stimulus signal; and outputting the altered stimulus signal.
Abstract:
An apparatus for wireless testing, wherein the apparatus includes a test interface, a test generator, a test module, and an analysis module. The test interface is coupled to an electronic device and is configured to transmit data to the electronic device and to receive data from the electronic device. The test generator drives the electronic device through the test interface to vary the beam direction. The test module determines a plurality of transmit values of a transmit parameter based on the test signal wirelessly received from the electronic device using at least one static antenna for receiving the test signal. Each transmit value of the transmit parameter is associated with a different beam direction. The analysis module provides an assessment of the plurality of transmit paths of the electronic device based on the plurality of transmit values.
Abstract:
A method of sharing a test resource at a plurality of test sites executes respective test flows at the plurality of test sites with an offset in time, the respective test flows accessing the test resource at a predetermined position in the test flow.
Abstract:
An apparatus for wireless testing, the apparatus comprising: a test interface, a test generator, a test module, and an analysis module. The test interface is coupled to an electronic device and is configured to transmit data to the electronic device and to receive data from the electronic device. The test generator drives the electronic device through the test interface to vary the beam direction. The test module determines a plurality of transmit values of a transmit parameter based on the test signal wirelessly received from the electronic device using at least one static antenna for receiving the test signal. Each transmit value of the transmit parameter is associated with a different beam direction. The analysis module provides an assessment of the plurality of transmit paths of the electronic device based on the plurality of transmit values.
Abstract:
A method of sharing a test resource at a plurality of test sites executes respective test flows at the plurality of test sites with an offset in time, the respective test flows accessing the test resource at a predetermined position in the test flow.
Abstract:
A coupling unit is adapted to be coupled between a first and a second unit to be tested. Said coupling unit comprises a first signal path that is adapted to provide a signal connection between at least one terminal of the first unit to be tested and at least one terminal of the second unit to be tested. The first signal path comprises a signal conditioning facility adapted for receiving a first signal from the first unit to be tested, for conditioning said first signal in accordance with predefined parameters, and for providing the conditioned first signal to the second unit to be tested.
Abstract:
A coupling unit is adapted to be coupled between a first and a second unit to be tested. Said coupling unit comprises a first signal path that is adapted to provide a signal connection between at least one terminal of the first unit to be tested and at least one terminal of the second unit to be tested. The first signal path comprises a signal conditioning facility adapted for receiving a first signal from the first unit to be tested, for conditioning said first signal in accordance with predefined parameters, and for providing the conditioned first signal to the second unit to be tested.