摘要:
A method of manufacturing optical identification elements that includes forming a diffraction grating in a fiber substrate along a longitudinal axis of the substrate. The grating includes a resultant refractive index variation. The method also includes cutting the substrate transversely to form a plurality of optical identification elements that have the grating therein along substantially the entire length of the elements. Each of the elements has substantially the same resultant refractive index variation.
摘要:
A method for manufacturing a diffusion grating-based optical identification element is provided. The optical identification element includes a known fiber substrate, having a diffraction grating disposed therein the grating being indicative of a code when exposed to incident light. A large number of elements or microbeads all having the same identification codes can be manufactured by cutting the substrate transversely where the grating is located, thereby creating a plurality of elements, at least two of the elements having the grating therein along substantially the entire length of the elements. The elements may be manufactured in many different ways, including winding the fiber onto a basket, forming the gratings in the basket openings or bays, removing the fiber and cutting the fiber to form the elements 8. Each bay may have a set of elements with a unique set of codes therein.
摘要:
A system for writing an optical code within or on a fiber substrate. The system includes a holding device that has a plurality of supports spaced apart from each other. The fiber substrate is wound about the supports such that the fiber substrate forms at least one flat section extending between adjacent supports. The system also includes at least one light source that is configured to write an optical code within or on the flat section of the fiber substrate.
摘要:
A system for writing an optical code within or on a fiber substrate is provided. The system includes a holding device that has a plurality of supports spaced apart from each other. The fiber substrate is wound about the supports such that the fiber substrate forms at least one flat section extending between adjacent supports. The system also includes at least one light source that is configured to write an optical code within or on the flat section of the fiber substrate.
摘要:
A method and apparatus are provided for aligning optical elements or microbeads, wherein each microbead has an elongated body with a code embedded therein along a longitudinal axis thereof to be read by a code reading device. The microbeads are aligned with a positioning device so the longitudinal axis of the microbeads is positioned in a fixed orientation relative to the code reading device. The microbeads are typically cylindrically shaped glass beads between 25 and 250 microns (μm) in diameter and between 100 and 500 μm long, and have a holographic code embedded in the central region of the bead, which is used to identify it from the rest of the beads in a batch of beads with many different chemical probes. A cross reference is used to determine which probe is attached to which bead, thus allowing the researcher to correlate the chemical content on each bead with the measured fluorescence signal. Because the code consists of a diffraction grating typically disposed along an axis, there is a particular alignment required between the incident readout laser beam and the readout detector in two of the three rotational axes. The third axis, rotation about the center axis of the cylinder, is azimuthally symmetric and therefore does not require alignment.
摘要:
A method and apparatus for performing an assay process, featuring providing microbeads in a solution, each microbead having a particle substrate with a grating with a superposition of different predetermined regular periodic variations of the index of refraction disposed in the particle along a grating axis and indicative of a code; placing the microbeads on an alignment substrate; reading codes of the microbeads and the position thereof on the alignment substrate; reading the fluorescence on each microbead and the position order thereof on the alignment substrate; and determining an assay result based on bead position order and bead code of the earlier reading steps.
摘要:
A method and apparatus f or performing an assay process, featuring providing microbeads in a solution; placing the microbeads on an alignment substrate; reading codes of the microbeads and the position thereof on the alignment substrate; reading the fluorescence on each microbead and the position order thereof on the alignment substrate; and determining an assay result based on bead position order and bead code of the earlier reading steps, where the microbead is an encoded particle having a particle substrate; a portion of the substrate being made of a substantially single material and having at least one diffraction grating embedded therein, the grating having a resultant refractive index variation within the single material at a grating location; and the grating providing an optical output signal indicative of a code when illuminated by an incident light signal propagating from outside said substrate, the optical output signal being a result of passive, non-resonant scattering from said grating when illuminated by said incident light signal.
摘要:
An optical filter for filtering a spectral profile of an optical signal for providing an output signal having a desire gain profile, such as a flatten gain profile. The filter comprises an optical waveguide that includes a core disposed within a cladding having an outer dimension greater than 0.3 mm. A Bragg grating is imparted or written in the core of the waveguide that attenuates the received optical input signal in accordance with a defined reflection or transmission filter profile. The Bragg grating may be a slanted grating. The filter profile is complementary to the spectral gain profile of the input signal to provide an output signal having a substantially flat spectral profile of a desired wavelength band. The cladding of the waveguide may have a mechanically advantageous outer geometry (e.g., a “dogbone” shape) for allowing an axial compressive force to tune the Bragg grating. The waveguide may be package within an athermal device, which tunes the grating to compensate for temperature dependent changes. Further, the waveguide may be packaged in a tuning device to selective tune the gratings to shift the center wavelength of the spectral profile of the filter, or to change the shape of the filter profile.
摘要:
An optical reader system including a source light assembly that has a code-reading beam and a fluorescence-excitation beam that are configured to illuminate encoded substrates. The substrates have optically readable codes that provide output signals when the code-reading beam is incident thereon. The output signals are indicative of the codes. The reader system also includes a fluorescence detector that is configured to detect fluorescent signals from the substrates and code pickup optics that are configured to project the output signals from the optically readable codes onto a Fourier plane. The reader system also includes a code detector that is positioned to detect the output signals in the Fourier plane.
摘要:
An optical reader system that includes a plurality of substrates. The substrates have an optically readable code disposed therein and a source light assembly that is configured to illuminate the substrates with a code-reading beam and another beam for detecting another optically readable property of the substrate. The code-reading beam and the other beam form beam spots on the substrates that have different shapes. The system also includes a reader that is configured to receive output signals from the code-reading beam and the other beam when the substrates are illuminated. The output signals from the code-reading beam are indicative of the code.