摘要:
A method and system feeds a sheet through a media path in a process direction. When the sheet is within a sheet registration carriage of the media path, the method and system align the sheet to a predetermined lateral position within the media path. The aligning process comprises unevenly activating nips within the sheet registration carriage and moving the sheet registration carriage in a lateral direction perpendicular to the process direction. If the lateral movement distance exceeds a predetermined distance, the method and system move the sheet registration carriage toward the starting position after the nips have released the sheet, but before the sheet has passed by the nips.
摘要:
A closed loop feedback method that continuously adjusts the lateral and skew position of a sheet includes a first sensor that is used to measure lateral sheet edge position. A second sensor measures the lateral sheet edge position at a certain distance from the first sensor. Sheet skew values can thus be calculated. Lateral and skew controllers provide outputs to lateral and skew actuators, respectively, to adjust the sheet position. A different method of registering sheets laterally and in skew enables active sheet deskew without translating the sheet in the cross-process direction. A sensor carriage position is controlled to find the sheet edge after which deskew control can start. The average value of the carriage position can then be fed in a feedforward manner to move the image location to match the average paper position. This achieves good average lateral registration and active skew control at a reduced cost.
摘要:
An image-to-sheet closed loop registration system tracking the image drum position and/or velocity and coordinating movement of the sheet into the transfer nip based on such information.
摘要:
A method of registering sheets laterally and in skew enables active sheet deskew without translating the sheet in the cross-process direction. A sensor carriage position is controlled to find the sheet edge after which deskew control can start. The average value of the carriage position can then be fed in a feedforward manner to move the image location to match the average paper position. This achieves good average lateral registration and active skew control at a reduced cost.
摘要:
An integrated printing system is provided and includes at least two generally vertically aligned image marking engines and at least two generally horizontally aligned image marking engines. The printing system further includes at least one generally horizontal interface media transport for transporting media between and to the vertically aligned and the horizontally aligned image marking engines.
摘要:
A method of registering sheets laterally and in skew enables active sheet deskew without translating the sheet in the cross-process direction. A sensor carriage position is controlled to find the sheet edge after which deskew control can start. The average value of the carriage position can then be fed in a feedforward manner to move the image location to match the average paper position. This achieves good average lateral registration and active skew control at a reduced cost.
摘要:
A method and system feeds a sheet through a media path in a process direction. When the sheet is within a sheet registration carriage of the media path, the method and system align the sheet to a predetermined lateral position within the media path. The aligning process comprises unevenly activating nips within the sheet registration carriage and moving the sheet registration carriage in a lateral direction perpendicular to the process direction. When the sheet is within the sheet registration carriage, the method and system determine a lateral movement distance the sheet registration carriage will move in the lateral direction during the aligning of the sheet. If the lateral movement distance exceeds a predetermined distance, the method and system move the sheet registration carriage toward the starting position after the nips have released the sheet, but before the sheet has passed by the nips. If the lateral movement distance does not exceed the predetermined distance, the method and system delay moving the sheet registration carriage toward the starting position until after the sheet has passed by the nips.
摘要:
Embodiments described herein are directed to characterizing a media curler for a printing. Test curls can be imposed on media having input curls with known input values using a media curler to be characterized. The media curler can impose the test curls based on curler settings of the media curler. Resulting output values from an interaction between the test curls and the input curls can be measured and the curler settings can be characterized based on the known input values and the resulting output values so that the media curler can be configured to respond to incoming media having a known input curl by applying curler setting to achieve a desired output curl.
摘要:
A method and system for determining sheet position and orientation of a sheet as the sheet moves along a feed path is provided herein. The method includes moving the sheet along the feed path and past at least one point sensor to measure a first position of the sheet relative to a first reference axis coinciding with the process direction of the feed path. Next, the method provides for moving the sheet along the feed path and past at least one linear array sensor to measure a second position of the sheet relative to a second reference axis disposed perpendicular to the first reference axis and an angular orientation of the sheet in the reference plane relative to a third reference axis perpendicular to the reference plane. After that, a sheet velocity is determined. Then, one or more estimated sheet positions along the feed path are determined.
摘要:
A method and system for determining sheet position and orientation of a sheet as the sheet moves along a feed path is provided herein. The method includes moving the sheet along the feed path and past at least one point sensor to measure a first position of the sheet relative to a first reference axis coinciding with the process direction of the feed path. Next, the method provides for moving the sheet along the feed path and past at least one linear array sensor to measure a second position of the sheet relative to a second reference axis disposed perpendicular to the first reference axis and an angular orientation of the sheet in the reference plane relative to a third reference axis perpendicular to the reference plane. After that, a sheet velocity is determined. Then, one or more estimated sheet positions along the feed path are determined.