摘要:
A method for processing black point compensation parameters for a color image to be printed so as to enhance image quality of the color image is provided. The method includes analyzing image content of a received color image to identify one or more performance attributes to be considered during a black point compensation parameters processing procedure, the performance attributes estimate an effect of the black point compensation parameters on the image quality of the received color image; selecting, based on the identified performance attributes, a black point compensation (BPC) algorithm to be used during the processing procedure; deriving a model using the identified performance attribute that is configured to estimate relationships between the black point compensation parameters and the identified performance attribute; maximizing the performance attribute of the derived model so as to process the BPC parameters for the color image; and using the processed black point compensation parameters to construct output device profiles.
摘要:
What is disclosed is a system and method for merit-based gamut mapping. In one embodiment, color points are clustered in regions of interest within a color space. Each cluster is associated with a gamut mapping function and a merit function. Mapping parameters of each gamut mapping function are iteratively varied to optimize the values based on the merit function value. An optimized gamut mapping function results. Optimized gamut mapping functions of adjacent clusters are blended together by blending the value of the gamut mapping function for a point of a cluster with a value produced by the gamut mapping function of an adjacent cluster for that color point. The composite gamut mapping function contains the optimized gamut mapping functions of all clusters is then output for use in mapping points within those clusters to points within the target gamut. The composite gamut mapping function exploits local advantages of each cluster.
摘要:
This disclosure provides methods, apparatus and systems for generating a profile for a printing device. Specifically, the profile is generated by selecting a GCR profile from a plurality of GCR profiles and mapping a plurality of nodes to a device dependent color space as a function of the selected GCR profiles.
摘要:
A method and system for providing a feedback based dynamic pricing algorithm with an embedded controller for a HOT (High Occupancy Toll) lane. An input-output transfer function of a vehicle flow with respect to a HOT lane can be obtained utilizing a simulation module. A feedback controller combined with, for example, a Smith predictor can be designed to avoid an unstable behavior due to a time delay in the HOT lane, a price regulation, and a large transient caused by an integral part of the controller due to traffic jams. A driver behavior preference model can be derived based on a relationship between a toll rate and several characteristics of the HOT lane and a general purpose lane. The feedback controller and the behavior preference model can then be implemented to set the toll rate in real-time in order to satisfy a desired performance metric.
摘要:
A method and system for providing a feedback based dynamic pricing algorithm with an embedded controller for a HOT (High Occupancy Toll) lane. An input-output transfer function of a vehicle flow with respect to a HOT lane can be obtained utilizing a simulation module. A feedback controller combined with, for example, a Smith predictor can be designed to avoid an unstable behavior due to a time delay in the HOT lane, a price regulation, and a large transient caused by an integral part of the controller due to traffic jams. A driver behavior preference model can be derived based on a relationship between a toll rate and several characteristics of the HOT lane and a general purpose lane. The feedback controller and the behavior preference model can then be implemented to set the toll rate in real-time in order to satisfy a desired performance metric.
摘要:
A method of color management for image marking devices utilizes an automated spot color editor having a control module accessing a graphical user interface. The method includes receiving image data input, in either device-dependent color space or device-independent color space, for a marking job. It is determined whether spot colors are present within the image data input and whether the CMYK values for each of the spot colors present within the image data input are included in the marking device spot color dictionary. Operational parameters for the automated spot color editor are initialized, with operational parameters including the desired performance criteria to be minimized by the automated spot color editor through selection of one or more matrices from a plurality of possible gain matrices to identify new CMYK values. The quality level of the new CMYK values is assessed and new CMYK values are transmitted to image printing device(s).
摘要:
Differences between an offline spectrophotometer and an inline spectrophotometer can result in differences between a hardcopy target color and a printed reproduction of that color. The inline spectrophotometer is inside of a printer and configured to measure printer output. As such, the inline spectrophotometer cannot conveniently measure the hardcopy target color. A printing error or an instrument offset can be determined and passed to a color correction module that updates the device dependent color specification associated with the given spot color. This color specification may be stored, for example, in the printer controller, and used when a document subsequently calls for that spot color, thereby providing accurate color reproduction from that particular printer incorporating that particular inline spectrophotometer.
摘要:
Differences between an offline spectrophotometer and an inline spectrophotometer can result in differences between a hardcopy target color and a printed reproduction of that color. The inline spectrophotometer is inside of a printer and configured to measure printer output. As such, the inline spectrophotometer cannot conveniently measure the hardcopy target color. A printing error or an instrument offset can be determined and passed to a color correction module that updates the device dependent color specification associated with the given spot color. This color specification may be stored, for example, in the printer controller, and used when a document subsequently calls for that spot color, thereby providing accurate color reproduction from that particular printer incorporating that particular inline spectrophotometer.
摘要:
A switching controller system and method for improving graininess in an image during a profile construction. A switching control strategy can be employed to construct an ICC destination profile by switching between a first controller (e.g., a 3-input 4-output controller) and a second controller (e.g., a 3-input 3-output controller) based on a color space region that requires a graininess minimization. The first controller dynamically modifies the CMYK values until reaching a subset of LAB values contained in the ICC profile. The second controller varies three colorants and holds a remaining colorant of the CMYK values until reaching the remaining LAB values in the ICC profile. Such an approach reduces the graininess and provides an improved smoothness with respect to the image during the ICC profile construction.
摘要:
Linear transformations of L*a*b* color space are provided to minimize interpolation errors when performing multi-dimensional color space conversions involving lookup tables. Methods are provided for linear transformations (e.g., rotation and shear) to substantially fit the sampling grid to a given printer gamut.
摘要翻译:提供L * a * b *颜色空间的线性变换,以便在执行涉及查找表的多维颜色空间转换时,最小化插补误差。 提供了用于线性变换(例如旋转和剪切)以将采样网格基本拟合到给定的打印机色域的方法。