摘要:
In general, the invention is directed to treatment of urinary incontinence by the implantation of one or more bulking prostheses proximate to a urethral sphincter. These bulking prostheses, which may include biocompatible hydrogel, are implanted into the tissue outside the urethra, proximate to a urethral sphincter. When implanted, the bulking prostheses are in a miniature state. Upon introduction into the body, the devices enter an enlarged state. In their enlarged state, the bulking prostheses supply extra bulk to the tissues proximate to the external urethral sphincter. With the extra bulk, the patient can exercise voluntary control over the external urethral sphincter to close or maintain closure of the urethra and maintain urinary continence.
摘要:
In general, the invention is directed to treatment of fecal incontinence by the implantation of one or more bulking prostheses proximate to an anal sphincter. These bulking prostheses, which may include biocompatible hydrogel, are inserted into the tissue near the anus through a small opening in the mucosa. When inserted, the bulking prostheses are in a miniature state. Upon introduction into the body, the devices enter an enlarged state. In their enlarged state, the bulking prostheses supply extra bulk to the tissues proximate to the anal sphincters. With the extra bulk, the patient can exercise voluntary control over the external sphincter to close the anus and maintain fecal continence.
摘要:
An implantable electrical stimulation lead includes an integrated fixation mechanism that expands upon implantation of the lead to fix the lead relative to a target tissue site, such as tissue within the epidural region proximate the spine or the sacral foramen. The fixation mechanism may include one or more expandable wire-like elements, which may be configured in a substantial helical shape. The wire-like elements may be formed from an elastic or super-elastic material, and expand radially outward when a restraint mechanism is removed following implantation of the lead.
摘要:
An implantable medical electrical lead particularly for stimulation of the sacral nerves comprises a lead body extending between a distal end and a proximal end, and the distal end having at least one electrode of an electrode array extending longitudinally from the distal end toward the proximal end. The lead body at its proximal end may be coupled to a pulse generator, additional intermediate wiring, or other stimulation device. A fixation mechanism is formed on or integrally with the lead body proximal to the electrode array that is adapted to be implanted in and engage subcutaneous tissue, particularly muscle tissue, to inhibit axial movement of the lead body and dislodgement of the stimulation electrodes.
摘要:
An implantable medical electrical lead particularly for stimulation of the sacral nerves comprises a lead body extending between a distal end and a proximal end, and the distal end having at least one electrode of an electrode array extending longitudinally from the distal end toward the proximal end. The lead body at its proximal end may be coupled to a pulse generator, additional intermediate wiring, or other stimulation device. A fixation mechanism is formed on or integrally with the lead body proximal to the electrode array that is adapted to be implanted in and engage subcutaneous tissue, particularly muscle tissue, to inhibit axial movement of the lead body and dislodgement of the stimulation electrodes.
摘要:
An implantable medical lead for stimulation of the sacral nerves comprises a lead body which includes a distal end and a proximal end, and the distal end having at least one electrode contact extending longitudinally from the distal end toward the proximal end. The lead body at its proximal end may be coupled to a pulse generator, additional intermediate wiring, or other stimulation device. The electrode contact of the permanently implantable neurostimulation lead comprises an elongated, flexible, coiled wire or mesh electrode having an exposed electrode length that is adapted to be inserted through the foramen from a posterior access to locate the coiled wire electrode alongside the sacral nerve extending anteriorly and/or posteriorly therefrom. The coiled wire or mesh electrode structure is flexible and bendable to enable its placement through the foramen and alongside the sacral nerve and to conform to the surrounding nerves and tissue. Preferably, further shorter length electrodes are provided along the distal segment of the lead body to enable testing of the positioning of the elongated wire coil or mesh electrode or to provide alternate stimulation electrodes upon dislocation of the elongated wire coil or mesh electrode.
摘要:
An implantable medical electrical lead particularly for stimulation of the sacral nerves comprises a lead body extending between a distal end and a proximal end, and the distal end having at least one electrode of an electrode array extending longitudinally from the distal end toward the proximal end. The lead body at its proximal end may be coupled to a pulse generator, additional intermediate wiring, or other stimulation device. A fixation mechanism is formed on or integrally with the lead body proximal to the electrode array that is adapted to be implanted in and engage subcutaneous tissue, particularly muscle tissue, to inhibit axial movement of the lead body and dislodgement of the stimulation electrodes. The fixation mechanism comprises a M tine elements arrayed in a tine element array along a segment of the lead proximal to the stimulation electrode array. Each tine element comprises at least N flexible, pliant, tines, each tine having a tine width and thickness and extending through a tine length from an attached tine end to a free tine end. The attached tine end is attached to the lead body from a tine attachment site and supports the tine extending outwardly of the lead body and proximally toward the lead proximal end. The M×N tines are adapted to be folded inward against the lead body when fitted into and constrained by the lumen of an introducer such that the tine free ends of more distal tines of more distal tine elements are urged toward or alongside the attached tine ends of the adjacent more proximal tines of more proximal tine elements, and the folded tines do not overlap one another.
摘要:
The invention provides an implantable trial neurostimulator. The implantable trial neurostimulator may be equipped with limited, short-term battery resources. The limited battery resources are designed to last for a finite period of time, thereby preventing a patient or physician from prolonging the trial neurostimulation period. For example, the implantable trial neurostimulator may be designed to stop functioning after a number of days or weeks, upon exhaustion of the battery resources. Alternatively, the implantable trial neurostimulator may be disabled upon expiration of a timer. The trial neurostimulator may be temporarily implanted in a subdural pocket in which the chronic stimulator is ultimately implanted. In this manner, the trial neurostimulator can be coupled to a chronic lead and avoid any percutaneous connections, reducing the risk of infection and affording greater convenience and comfort to patients.
摘要:
An implantable medical electrical lead comprises a lead body extending between a distal end and a proximal end, and the distal end having at least one electrode of an electrode array extending longitudinally from the distal end toward the proximal end. The lead body at its proximal end may be coupled to a pulse generator, additional intermediate wiring, or other stimulation device. A fixation mechanism is formed on or integrally with the lead body proximal to the electrode array that is adapted to be implanted in and engage subcutaneous tissue, particularly muscle tissue, to inhibit axial movement of the lead body and dislodgement of the stimulation electrodes. The fixation mechanism comprises a plurality of tine elements arrayed in a tine element array along a segment of the lead.
摘要:
Bifurcated, active fixation, gastrointestinal leads adapted to be implanted within the body at a site of the GI tract to conduct electrical stimulation and electrical signals of the GI tract between the gastrointestinal stimulator and the site are disclosed. The GI tract lead has a lead body comprising a common lead body trunk extending from a lead body trunk proximal end to a junction with a first plurality of lead body legs that extend from the junction to a like first plurality of lead body leg distal ends. An electrode head is formed at each lead body leg distal end having a plate and supporting at least one stimulation/sense electrode and an active fixation mechanism, whereby a plurality of active fixation attachment mechanisms are supported by a like plurality of electrode heads. The plurality of electrode heads can be affixed by the fixation mechanism at a plurality of spaced apart locations of the GI tract. The plurality of electrode heads can be affixed spaced apart an optimal distance for efficacious sensing and/or stimulation accommodating the physiology and any defects or surgical interventions of the physiology or other therapeutic equipment or IMDs that restrict full access to the GI tract.