Abstract:
A transport path is defined by a plurality of consecutively arranged separately driven conveyor sections. A plurality of heat treating stations are spaced one from the other along the transport path. Coils are conveyed along the transport path through one or more of the heat treating stations. The speed at which the coils are conveyed on the separately driven conveyor sections is controlled to provide different transport and/or dwell times for the coils at different locations along the transport path.
Abstract:
A modular rolling mill comprises a plurality of separate rolling units arranged along a mill pass line. Each rolling unit includes at least two pairs of work rolls defining oval and round roll passes and carried on roll shafts that are staggered 90° with respect to each other. The rolling units contain intermediate drive trains configured to connect the roll shafts to parallel input shafts projecting to a first side of the pass line from the respective rolling units. A single driven line shaft is parallel to and on the first side of the pass line. Output shafts are mechanically coupled to the line shaft by bevel gear sets. The output shafts project laterally from the line shaft towards the pass line and are connected by separable couplings to the input shafts of the rolling units.
Abstract:
A feed product is rolled into different sized finished products in a rolling mill finishing section which comprises a plurality of modular rolling units arranged along the mill pass line. Each rolling unit includes two roll stands with work rolls configured to define successive oval and round roll passes. The roll stands are designed to effect specific area reductions on products rolled through their respective oval and round roll passes. Feed products having the same entry size are rolled into finished products having different reduced sizes by providing altered rolling sequences in which a selected rolling unit is replaced along the pass line with rolling units having roll stands designed to effect area reductions that differ from those of the roll stands of the replaced rolling unit. Rolling units downstream from the replaced rolling unit are removed from the pass line. The roll stands of rolling units upstream from the replaced rolling unit remain unchanged.
Abstract:
A modular rolling mill has a mill pass line along which products are rolled in a rolling direction. The rolling mill comprises first gear units arranged along a first line parallel to the mill pass mill line. Each first gear unit is driven individually by a motor and has a pair of mechanically interconnected output shafts. Second gear units are arranged along a second line between and parallel to both the first line and the mill pass line. Each second gear unit has a pair of mechanically interconnected input shafts driving a pair of output shafts. Rolling units are arranged in succession along the mill pass line. Each rolling unit is driven by an input shaft and has a pair of mechanically interconnected roll shafts carrying work rolls. First couplings connect the output shafts of each first gear unit to input shafts of two successive gear units, and second couplings releasably connect the output shafts of the second gear units to the input shafts of two successive rolling units.
Abstract:
A modular rolling mill has a mill pass line along which products are rolled in a rolling direction. The rolling mill comprises first gear units arranged along a first line parallel to the mill pass mill line. Each first gear unit is driven individually by a motor and has a pair of mechanically interconnected output shafts. Second gear units are arranged along a second line between and parallel to both the first line and the mill pass line. Each second gear unit has a pair of mechanically interconnected input shafts driving a pair of output shafts. Rolling units are arranged in succession along the mill pass line. Each rolling unit is driven by an input shaft and has a pair of mechanically interconnected roll shafts carrying work rolls. First couplings connect the output shafts of each first gear unit to input shafts of two successive gear units, and second couplings releasably connect the output shafts of the second gear units to the input shafts of two successive rolling units.
Abstract:
Apparatus for bundling bars comprising an accumulator rotatable about a horizontal axis. The accumulator has a plurality of notches spaced angularly around its axis. A drive rotates the accumulator about its axis to sequentially locate the notches at: a) a first station at which long products are received in the notches and accumulated into batches; b) a second station at which the batches are tied into bundles; and c) a third station at which the bundles are delivered from the notches to a bundle collector.
Abstract:
A side looper comprises an entry guide for directing a longitudinally moving long product into an arcuate path, an exit guide for receiving the product exiting from the arcuate path, and inner and outer guide walls arranged between the entry and exit guides. The guide walls are adjustable between mutually spaced closed positions fixing the curvature of the arcuate path, and open positions allowing the curvature of the arcuate path to either increase or decrease.
Abstract:
A method is disclosed for controlling the speed of a curved rotatably driven laying pipe through which a longitudinally moving product is directed to exit from the delivery end of the pipe as a helical formation of rings. The method comprises determining the maximum and minimum internal radii Rmax, Rmin of the pipe at the location of the maximum radius R of the pipe as measured from its rotational axis; continuously measuring the velocity Vp of the product entering the laying pipe; and, controlling the rotational speed of the laying pipe such that the rotational velocities Vmax, Vmin of the pipe at said maximum and minimum internal radii bracket a range containing the velocity Vp of the product.
Abstract:
A method and apparatus is disclosed for decelerating and temporarily accumulating a hot rolled product moving longitudinally along a receiving axis at a first velocity V1. The product is directed through a curved guide having an entry end aligned with the receiving axis to receive the product, and an exit end spaced radially from the receiving axis and oriented to deliver the product in an exit direction transverse to the receiving axis. The curved guide is rotated about the receiving axis in a direction opposite to the exit direction of the product and at a speed at which the guide exit end has a velocity V2, thereby decelerating the product being delivered from the guide exit end to a reduced velocity V3 equal to V1−V2. The curvature of the guide and the orientation of its exit end is such as to form the delivered product into a helix deposited and temporarily accumulated on a cylindrical drum. The drum is rotated in a direction opposite to the direction of rotation of the curved guide to thereby unwind the product from the drum.
Abstract:
Discrete billets are rolled through a plurality of roll stands arranged along a rolling mill pass line to produce successive product lengths having reduced cross sections and front and tail ends. At a selected location along the pass line, the tail end of each product length is joined to the front end of the next successive product length to thereby permit uninterrupted continuous rolling through the remainder of the mill.