Abstract:
A timing adjustment circuit includes at least one data line; a phase synchronization circuit that includes a plurality of oscillation delay elements which oscillate an oscillation signal, and that is configured to oscillate the oscillation signal by synchronizing a phase of a feedback clock with a phase of a reference clock; at least one delay circuit that includes a delay element which is disposed on the data line and which is equivalent to one of the plurality of oscillation delay elements, and that is configured to delay data which is to be transmitted on the data line; and a delay adjustment unit configured to adjust an amount of delay of the delay element of the delay circuit in accordance with a signal associated with oscillation of the phase synchronization circuit.
Abstract:
A timing adjustment circuit includes at least one data line; a phase synchronization circuit that includes a plurality of oscillation delay elements which oscillate an oscillation signal, and that is configured to oscillate the oscillation signal by synchronizing a phase of a feedback clock with a phase of a reference clock; at least one delay circuit that includes a delay element which is disposed on the data line and which is equivalent to one of the plurality of oscillation delay elements, and that is configured to delay data which is to be transmitted on the data line; and a delay adjustment unit configured to adjust an amount of delay of the delay element of the delay circuit in accordance with a signal associated with oscillation of the phase synchronization circuit.
Abstract:
A timing adjustment circuit includes at least one data line; a phase synchronization circuit that includes a plurality of oscillation delay elements which oscillate an oscillation signal, and that is configured to oscillate the oscillation signal by synchronizing a phase of a feedback clock with a phase of a reference clock; at least one delay circuit that includes a delay element which is disposed on the data line and which is equivalent to one of the plurality of oscillation delay elements, and that is configured to delay data which is to be transmitted on the data line; and a delay adjustment unit configured to adjust an amount of delay of the delay element of the delay circuit in accordance with a signal associated with oscillation of the phase synchronization circuit.
Abstract:
A timing adjustment circuit includes at least one data line; a phase synchronization circuit that includes a plurality of oscillation delay elements which oscillate an oscillation signal, and that is configured to oscillate the oscillation signal by synchronizing a phase of a feedback clock with a phase of a reference clock; at least one delay circuit that includes a delay element which is disposed on the data line and which is equivalent to one of the plurality of oscillation delay elements, and that is configured to delay data which is to be transmitted on the data line; and a delay adjustment unit configured to adjust an amount of delay of the delay element of the delay circuit in accordance with a signal associated with oscillation of the phase synchronization circuit.
Abstract:
A timing adjustment circuit includes at least one data line; a phase synchronization circuit that includes a plurality of oscillation delay elements which oscillate an oscillation signal, and that is configured to oscillate the oscillation signal by synchronizing a phase of a feedback clock with a phase of a reference clock; at least one delay circuit that includes a delay element which is disposed on the data line and which is equivalent to one of the plurality of oscillation delay elements, and that is configured to delay data which is to be transmitted on the data line; and a delay adjustment unit configured to adjust an amount of delay of the delay element of the delay circuit in accordance with a signal associated with oscillation of the phase synchronization circuit.
Abstract:
A timing adjustment circuit includes at least one data line; a phase synchronization circuit that includes a plurality of oscillation delay elements which oscillate an oscillation signal, and that is configured to oscillate the oscillation signal by synchronizing a phase of a feedback clock with a phase of a reference clock; at least one delay circuit that includes a delay element which is disposed on the data line and which is equivalent to one of the plurality of oscillation delay elements, and that is configured to delay data which is to be transmitted on the data line; and a delay adjustment unit configured to adjust an amount of delay of the delay element of the delay circuit in accordance with a signal associated with oscillation of the phase synchronization circuit.
Abstract:
A timing adjustment circuit includes at least one data line; a phase synchronization circuit that includes a plurality of oscillation delay elements which oscillate an oscillation signal, and that is configured to oscillate the oscillation signal by synchronizing a phase of a feedback clock with a phase of a reference clock; at least one delay circuit that includes a delay element which is disposed on the data line and which is equivalent to one of the plurality of oscillation delay elements, and that is configured to delay data which is to be transmitted on the data line; and a delay adjustment unit configured to adjust an amount of delay of the delay element of the delay circuit in accordance with a signal associated with oscillation of the phase synchronization circuit.
Abstract:
A liquid crystal composition which comprises a liquid crystal compound having a smectic C phase and an optically active substance, both of said liquid crystal compound and optically active substance being compounds having an ester type bond in the molecular structure, and which has a lowered transition temperature region for the smectic C phase, is chemically stable and stable for use in field effect type liquid crystal display elements etc.
Abstract:
The present invention provides a projection screen capable of sharply displaying an image even under bright environmental light, of improving brightness distribution and viewing angle, and of providing high image visibility, and a projection system including such a projection screen. The projection screen includes: a polarized-light selective reflection layer that selectively reflects a specific polarized-light component; a substrate that supports the polarized-light selective reflection layer; and a circular Fresnel lens provided on the observation side of the polarized-light selective reflection layer. The circular Fresnel lens controls the optical axis of right-handed circularly polarized light projected on the projection screen so that the light enters the polarized-light selective reflection layer nearly vertically to it regardless of the point and angle at which the light is incident on this layer. The right-handed circularly polarized light incident on the polarized-light selective reflection layer is diffuse-reflected from this layer owing to the scattering properties (the property of diffusing light that is selectively reflected, owing to structural non-uniformity in a cholesteric liquid crystalline structure containing a plurality of helical structure parts whose helical axes extend in different directions) possessed by the polarized-light selective reflection layer, and the reflected light is returned, via the circular Fresnel lens, to a particular observation point at which a viewer makes observation.
Abstract:
Disclosed are conditioning compositions comprising by weight: (a) from about 0.1% to about 10% of a surfactant system comprising at least one cationic surfactant; (b) from about 0.05% to about 10% of a polymer selected from the group consisting of an anionic polymer, an amphoteric polymer, and mixtures thereof; and (c) an aqueous carrier; wherein the surfactant system and the polymer form a water-insoluble complex upon dilution, and wherein the composition is transparent or translucent. The compositions are especially suitable for hair care products such as hair conditioning products for rinse-off use.