摘要:
An electrode for a PTC thermistor of the present invention includes a base layer having electrical conductivity and a sintered layer formed on the base layer. The sintered layer is formed by sintering a conductive powder and has electrical conductivity, and has roughness on a surface thereof. Thus, the present invention can provide an electrode for a PTC thermistor that has a large adhesion to the conductive polymer and can be produced easily.
摘要:
An electrode for a PTC thermistor of the present invention includes a base layer having electrical conductivity and a sintered layer formed on the base layer. The sintered layer is formed by sintering a conductive powder and has electrical conductivity, and has roughness on a surface thereof. Thus, the present invention can provide an electrode for a PTC thermistor that has a large adhesion to the conductive polymer and can be produced easily.
摘要:
A measuring method of determining component concentration in a solution by calculating component concentrations in the solution at various temperatures in a small number of steps. The component concentration is measured at an arbitrary temperature T by using a solution absorbance spectrum and solvent absorbance spectrum at a plurality of wavelength(s)r, and preliminarily determining a calibration coefficient Mij (TO). Concentration of Ci of component i in solution at reference temperature TO, is obtained at differential spectrum of solution spectrum S (λj, T) at temperature T in j-th wavelength λj and solvent spectrum B (λj, T) at temperature T in j-th wavelength λj, calculating calibration coefficient Mij (TO) the specific component concentrations.
摘要:
The present invention aims to provide a PTC thermister which uses a conductive polymer having a positive temperature coefficient and has a high withstand voltage and high reliability and in which no failure in electrical connection occurs in side electrode even when a mechanical stress occurs due to the thermal shock by repeated thermal expansion of the conductive polymer sheet. It also aims to provide a method to manufacture the above PTC thermister. To achieve the above purpose, the PTC thermister of the present invention comprises (1)a laminated body made by alternately laminating conductive polymer sheets and inner electrodes, (2) outer electrodes disposed on tops and bottoms of said laminated body and (3) multi-layered side electrodes disposed at the center of both sides of said laminated body and is electrically coupled with said inner electrodes and said outer electrodes. And, a side of laminated body having an area on which a side electrode layer is formed and areas on which side electrode is not formed. A method for manufacturing a PTC thermistor comprises the steps of (1) forming a laminated body by sandwiching a conductive polymer sheet with metal foils, and then integrating them by heat pressing, (2) sandwiching the laminated body and conductive polymer sheets from the top and bottom by metal foils, and integrating them by heat pressing. A multi-layered PTC thermistor is obtained by repeating above processes.
摘要:
To provide a pulmonary disease therapeutic drug exhibiting high efficacy and reduced side effects.The pulmonary disease therapeutic drug of the invention for intratracheal administration contains biocompatible polymer nanoparticles including an HMG-CoA reductase inhibitor.
摘要:
The invention presents a PTC thermistor which is high in adhesive strengths of inner- and outer-layer electrodes composed of metallic foil respectively stuck to conductive sheets, and has a larger current breaking characteristic. It contains a laminated body (13) which is formed by alternately laminating a plurality of conductive sheets (14) and an inner-layer electrode (11) composed of metallic foil having first plated layers (12) so that the conductive sheets (14) can become the outermost layers, an outer-layer electrode (18) positioned at the outermost layer of the laminated body (13), and having a second plated layer (16) on a side facing the inner-layer electrode (11), and side-face electrode layers 20) disposed at facing sides of the laminated body 913) for connecting electrically the inner-layer electrode (11) and outer-layer electrode (18).
摘要:
A chip PTC thermistor is provided which is capable of increasing the rate of increase in resistance when an overcurrent is applied, thereby increasing the breakdown voltage. The PTC thermistor comprises: a first main electrode and a first sub-electrode disposed on a first face of a conductive polymer with PTC properties; a second main electrode and a second sub-electrode disposed on a second face of the conductive polymer, which is facing the first face; and first and second side electrode and disposed on side faces of the conductive polymer. Cut-off sections are provided to the vicinity of joints of the first main electrode and the first side electrode, and joints of the second main electrode and the second side electrode.
摘要:
A chip polymer PTC thermistor for surface mount assembly having a superior long-term connection reliability between side electrode and main and sub electrodes. The thermister comprises; a rectangular parallelepiped conductive polymer(11) having PTC properties; a first main electrode(12a) and a first sub electrode(12b) disposed on a first face of the conductive polymer; a second main electrode(12c) and a second sub electrode(12d) disposed on a second face opposite the first face of the conductive polymer; and first and second side electrodes(13a,13b) folding around and over the entire surface of side faces of the conductive polymer, the side electrodes electrically coupling the electrodes disposed on the two faces of the conductive polymer, and a thickness of the side electrodes is not less than one twentieth of the distance between the first main electrode(12a) and the second sub electrode(12d) and the distance between the first sub electrode(12b) and second main electrode(12a,12c).
摘要:
In a subband acoustic echo canceller, FG/BG filters are provided in M ones of N subbands into which the received signal is divided, and adaptive filters are provided in the other remaining subbands. In the respective FG/BG filters, during the detection of a non-double-talk state their transfer logic parts output state signals GD-j, GD-k, . . . and their adaptive operation control parts each apply an adaptation condition signal ADP to the adaptive filter in each of the above-mentioned other remaining subbands when a predetermined number or more of the FG/BG filters output the state signals GD-j, GD-k, . . . The adaptive filter updates the subband estimated echo path coefficient only when it is supplied with the signal ADP.
摘要:
In an adaptive estimation of an acoustic transfer function of an unknown system, a forward linear prediction coefficient vector a(k) of an input signal x(k), the sum of forward a posteriori prediction-error squares F(k), a backward linear prediction coefficient vector b(k) of the input signal x(k) and the sum of backward a posteriori prediction-error squares B(k) are computed. Letting a step size and a pre-filter deriving coefficient vector be represented by .mu. and f(k), respectively, a pre-filter coefficient vector g(k) is calculated by a recursion formula for the pre-filter coefficient vector g(h), which is composed of the following first and second equations: ##EQU1##