摘要:
A pulse modulation type transmitter apparatus and a pulse modulation type receiver apparatus wherein both a fast synchronization establishment and a low power consumption of a synchronizing part can be achieved at the same time and wherein the data transmission/reception can be performed soon after a commencement of communication, and further a fast data transmission and a low power consumption can be achieved. A first template signal (1006), which is generated based on a separately transmitted RF frame synchronization signal (1005), is used to generate a frame synchronization signal (1009), and a second frame synchronization timing adjusting part (150) is used to synchronize the frame synchronization signal (1009) with a received RF data signal (1004). Then, a synchronization detection is performed, whereby a prompt pulse acquisition and a prompt pulse phase acquisition can be achieved. After the establishment of frame synchronization, a template switching part (142) is used to switch from the first template signal (1006) to a second template signal (1007) that has been already synchronized with the first template signal (1006). Then, a synchronization detection is performed, whereby the frame synchronization can be maintained.
摘要:
A transmitting device includes a continuous pulse generating unit, modulating unit, and output unit. The continuous pulse generating unit continuously generates multiple impulse waveforms at arbitrary time intervals but shorter than the pulse string repetition cycle. The modulating unit modulates continuous pulses generated by the continuous pulse generating unit, using transmission data. The output unit outputs a modulated pulse modulated by the modulating unit. The receiving device includes a modulated pulse receiving unit that receives a modulated pulse transmitted from the above-mentioned transmitting device; and a demodulating unit that receives transmission data by demodulating a modulated pulse received by the modulated pulse receiving unit.
摘要:
A pulse modulation type transmitter apparatus and a pulse modulation type receiver apparatus wherein both a fast synchronization establishment and a low power consumption of a synchronizing part can be achieved at the same time and wherein the data transmission/reception can be performed soon after a commencement of communication, and further a fast data transmission and a low power consumption can be achieved. A first template signal (1006), which is generated based on a separately transmitted RF frame synchronization signal (1005), is used to generate a frame synchronization signal (1009), and a second frame synchronization timing adjusting part (150) is used to synchronize the frame synchronization signal (1009) with a received RF data signal (1004). Then, a synchronization detection is performed, whereby a prompt pulse acquisition and a prompt pulse phase acquisition can be achieved. After the establishment of frame synchronization, a template switching part (142) is used to switch from the first template signal (1006) to a second template signal (1007) that has been already synchronized with the first template signal (1006). Then, a synchronization detection is performed, whereby the frame synchronization can be maintained.
摘要:
A master side communication apparatus and a slave side communication apparatus wherein the structure of a receiving part of the slave side communication apparatus is simplified to achieve a reduced size, a reduced power consumption and a reduced cost. The master side communication apparatus performs a communication in synchronism with the slave side communication apparatus having no synchronization timing adjusting function. A transport signal generating timing adjusting part of the master side communication apparatus acquires, from the slave side communication apparatus, synchronization signal generation timing information used when the slave side communication apparatus receives the transport signal from the master side communication apparatus. The transport signal generating timing adjusting part varies and adjusts, based on the acquired information, the transmission timing of the signal to be transmitted to the slave side communication apparatus. A transmitting part transmits the transport signal at the adjust transmission timing. The occurrence timing of the transport signal is varied and adjusted until the slave side communication apparatus becomes able to receive the transport signal from the master side communication apparatus.
摘要:
A transmitting device includes a continuous pulse generating unit, modulating unit, and output unit. The continuous pulse generating unit continuously generates multiple impulse waveforms at arbitrary time intervals but shorter than the pulse string repetition cycle. The modulating unit modulates continuous pulses generated by the continuous pulse generating unit, using transmission data. The output unit outputs a modulated pulse modulated by the modulating unit. The receiving device includes a modulated pulse receiving unit that receives a modulated pulse transmitted from the above-mentioned transmitting device; and a demodulating unit that receives transmission data by demodulating a modulated pulse received by the modulated pulse receiving unit.
摘要:
A communication system includes a modulating circuit to increase the amount of information to be transmitted, a transmitting apparatus capable of easily generating a desired waveform even for any very short wavelets, a receiving apparatus capable of easily separating wavelets even if the intervals thereof are narrow. The modulating circuit includes clock generating, transmission signal generating, control signal generating, delay and wavelet generating parts. The clock generating part generates a clock signal at predetermined time interval “Tp”. The transmission signal generating part generates a transmission signal at interval “Tp”. The control signal generating part outputs a control signal of a predetermined duration based on the clock signal. The delay part generates the control signal as a delay signal that has been delayed by a delay amount based on the transmission signal. The wavelet generating part generates a wavelet at the generation timing of the delay signal.
摘要:
A transmitter using a plurality of pulse signals having different pulse sequence times, a receiver for steadily demodulating pulse signals of only desirable wave, and a wireless system are disclosed. In the transmitter, a control signal generating circuit outputs a control signal for generating a plurality of pulse signals having different pulse sequence generating times, a pulse generating circuit generates a plurality of pulse signals by using the control signal. In the receiver, reception front end receives the plurality of pulse signals having different pulse sequence generating times, delay circuit delays at least one of reception front-end output signals supplied from the reception front-end by a given time, delay pulse composition circuit combines delay signal with reception front-end output signal, so that the receiver steadily demodulates the pulse signals of only the desirable wave.
摘要:
An impulse waveform generating apparatus includes a multistage delay pulse signal generating part for generating a plurality of delay pulse signals by a timing signal; a signal source signal generating part for generating a signal source signal indicating the frequency component of an impulse waveform signal by the delay pulse signals; an envelope formation signal generating part for generating an envelope formation signal indicating the amplitude component of the impulse waveform signal by the delay pulse signals; and a mixer part for multiplying the signal source signal by the envelope formation signal to generate a prescribed impulse waveform signal. The impulse waveform generating apparatus generates the impulse waveform signal from the timing signal. Therefore, the circuit arrangement requires no digital-to-analog converter, the operational frequency of each element can be reduced, and the power consumption can be reduced.
摘要:
An impulse waveform generating apparatus comprises an oscillator for generating a reference signal having a center frequency in a frequency band of an impulse to generate, a timing matching circuit for shifting a phase of the reference signal by 90 degrees, a frequency demultiplier for dividing a frequency of the phase shift signal and obtaining a timing signal having a frequency component having a frequency width of an impulse to generate, a memory storing a waveform shape table, a waveform forming section for forming a waveform in synchronism with the timing signal, according to information of a shape table having a predetermined waveform, a low-pass filter for obtaining an envelope signal from an output signal of the waveform forming section, and a waveform generating section for changing an amplitude of the reference signal according to a value of the envelope signal.
摘要:
The transmission device includes a first transmission RF part for RF modulating the pulse signal generated at the timing of a clock signal so as to generate a clock RF signal and for outputting the clock RF signal to a synchronization signal channel; a transmission data generator for generating transmission data in synchronization with the timing of the clock signal; a PPM modulator for PPM modulating the transmission data and for outputting a PPM modulation signal; and a second transmission RF part for RF modulating the PPM modulation signal so as to generate a data RF signal and for outputting the data RF signal to a data signal channel different from the synchronization signal channel. The reception device receives reference synchronization information so as to maintain phase synchronization in data reception.