摘要:
In a high-pressure discharge lamp that includes a bulb formed from a light emitting part having a discharge space therein and a pair of sealing parts connected to the light emitting part, and an electrode pair disposed within the discharge space, a section of a proximity conductor is wound substantially spirally around one of the sealing parts within a predetermined range from the light emitting part, while the remaining section of the proximity conductor crosses over the light emitting part and is electrically connected to the electrode nearer the other sealing part. By initiating a discharge after applying a high-frequency voltage of 1 kHz to 1 MHz to a high-pressure mercury lamp having this structure, the breakdown voltage can be suppressed to at least 8 kV.
摘要:
In a high-pressure discharge lamp that includes a bulb formed from a light emitting part having a discharge space therein and a pair of sealing parts connected to the light emitting part, and an electrode pair disposed within the discharge space, a section of a proximity conductor is wound substantially spirally around one of the sealing parts within a predetermined range from the light emitting part, while the remaining section of the proximity conductor crosses over the light emitting part and is electrically connected to the electrode nearer the other sealing part. By initiating a discharge after applying a high-frequency voltage of 1 kHz to 1 MHz to a high-pressure mercury lamp having this structure, the breakdown voltage can be suppressed to at least 8 kV.
摘要:
In a high-pressure discharge lamp that includes a bulb formed from a light emitting part having a discharge space therein and a pair of sealing parts connected to the light emitting part, and an electrode pair disposed within the discharge space, a section of a proximity conductor is wound substantially spirally around one of the sealing parts within a predetermined range from the light emitting part, while the remaining section of the proximity conductor crosses over the light emitting part and is electrically connected to the electrode nearer the other sealing part. By initiating a discharge after applying a high-frequency voltage of 1 kHz to 1 MHz to a high-pressure mercury lamp having this structure, the breakdown voltage can be suppressed to at least 8 kV.
摘要:
In a high-pressure discharge lamp that includes a bulb formed from a light emitting part having a discharge space therein and a pair of sealing parts connected to the light emitting part, and an electrode pair disposed within the discharge space, a section of a proximity conductor is wound substantially spirally around one of the sealing parts within a predetermined range from the light emitting part, while the remaining section of the proximity conductor crosses over the light emitting part and is electrically connected to the electrode nearer the other sealing part. By initiating a discharge after applying a high-frequency voltage of 1 kHz to 1 MHz to a high-pressure mercury lamp having this structure, the breakdown voltage can be suppressed to at least 8 kV.
摘要:
A manufacturing method of a high-pressure mercury lamp includes an electric field application step in which an electric field is applied to at least a light emission part (4) with the high-pressure mercury lamp being kept at a high temperature. This can reduce impurities such as hydrogen and alkali metals in a discharge space (8) and glass forming the light emission part (4). As a consequence, blackening and devitrification of the high-pressure mercury lamp while the lamp is lit can be reduced.
摘要:
A manufacturing method of a high-pressure mercury lamp includes an electric field application step in which an electric field is applied to at least a light emission part (4) with the high-pressure mercury lamp being kept at a high temperature. This can reduce impurities such as hydrogen and alkali metals in a discharge space (8) and glass forming the light emission part (4). As a consequence, blackening and devitrification of the high-pressure mercury lamp while the lamp is lit can be reduced.
摘要:
A method for manufacturing a high pressure mercury lamp having a high pressure resistance strength includes an electric field application step of applying an electric field to at least a light emitting part while keeping the high pressure mercury lamp at a high temperature. As a result of the electric field application step, impurities such as hydrogen and an alkali metal existing in a discharge space and in glass used for forming the light emitting part (1) and sealing parts (2) can be reduced, with it being possible to suppress blackening and devitrification during lighting.
摘要:
A method for manufacturing a high pressure mercury lamp having a high pressure resistance strength includes an electric field application step of applying an electric field to at least a light emitting part while keeping the high pressure mercury lamp at a high temperature. As a result of the electric field application step, impurities such as hydrogen and an alkali metal existing in a discharge space and in glass used for forming the light emitting part (1) and sealing parts (2) can be reduced, with it being possible to suppress blackening and devitrification during lighting.
摘要:
A high pressure discharge lamp with a trigger wire wound around a side tube portion has the structure in which the side tube portion has a first glass portion extending from a luminous bulb and a second glass portion provided in at least a portion of the inside of the first glass portion, and in which the second glass portion contains at least one substance of Li, Na, and K of from 0.001 wt % to 1.0 wt % inclusive. This structure provides a high pressure discharge lamp operable with a drastically reduced starting voltage.
摘要:
A method for manufacturing a high-pressure discharge lamp includes a process step in which a sealing portion is formed out of a side tube portion of a glass pipe that is designed for use in a discharge lamp. In the step of forming the sealing portion, a compound glass tube, which is composed of an outer tube made of a first glass and an inner tube made of a second glass whose softening point is lower than that of the first glass, is inserted into the side tube portion, which is also formed of the first glass. The side tube portion is then heated so that the side tube portion is brought in tight contact with the compound glass tube. Thereafter, at least the sealing portion is heated at a temperature higher than the strain point temperature of the second glass portion.