摘要:
It is made possible to provide an optical waveguide system that has a coupling mechanism capable of selecting a wavelength and has the highest possible conversion efficiency, and that is capable of providing directivity in the light propagation direction. An optical waveguide system includes: a three-dimensional photonic crystalline structure including crystal pillars and having a hollow structure inside thereof; an optical waveguide in which a plurality of metal nanoparticles are dispersed in a dielectric material, the optical waveguide having an end portion inserted between the crystal pillars of the three-dimensional photonic crystalline structure, and containing semiconductor quantum dots that are located adjacent to the metal nanoparticles and emit near-field light when receiving excitation light, the metal nanoparticles exciting surface plasmon when receiving the near-field light; and an excitation light source that emits the excitation light for exciting the semiconductor quantum dots.
摘要:
A method using a chemical synthesis method to produce a metallic nanoparticle inorganic composite having fine metallic nanoparticles that are uniformly dispersed at a high density in a solidified matrix, a metallic nanoparticle inorganic composite, and a plasmon waveguide using this composite are provided. Thus, a method including: preparing a precursor solution, applying the precursor solution onto a substrate, and then hydrolyzing the precursor solution to form an oxide film having fine pores, bringing the oxide film into contact with an acidic aqueous solution of tin chloride to chemically adsorb Sn2+ ions in the fine pores, removing an excess of the Sn2+ ions, bringing the oxide film into contact with an aqueous metal chelate solution to precipitate metallic nanoparticles in the fine pores, and removing an excess of ions of the metal is provided.
摘要:
A process for producing a metallic-nanoparticle inorganic composite 10 includes an oxide film formation step in which an oxide film 14 having micropores is formed on a substrate by a sol-gel method in which a metal alkoxide is partly hydrolyzed by the action of an acid catalyst, a tin deposition step in which the oxide film 14 is brought into contact with an acidic aqueous solution of tin chloride, an excess Sn2+ ion removal step in which Sn2+ ions are removed from the micropores, a metallic-nanoparticle deposition step in which the oxide film 14 is brought into contact with an aqueous solution of a metal chelate to deposit metallic nanoparticles 12 in the micropores, and an excess metal ion removal step in which metal ions are removed from the micropores; and a metallic-nanoparticle inorganic composite 10 is produced by this process.
摘要:
A method using a chemical synthesis method to produce a metallic nanoparticle inorganic composite having fine metallic nanoparticles that are uniformly dispersed at a high density in a solidified matrix, a metallic nanoparticle inorganic composite, and a plasmon waveguide using this composite are provided. Thus, a method including: preparing a precursor solution, applying the precursor solution onto a substrate, and then hydrolyzing the precursor solution to form an oxide film having fine pores, bringing the oxide film into contact with an acidic aqueous solution of tin chloride to chemically adsorb Sn2+ ions in the fine pores, removing an excess of the Sn2+ ions, bringing the oxide film into contact with an aqueous metal chelate solution to precipitate metallic nanoparticles in the fine pores, and removing an excess of ions of the metal is provided.
摘要:
An optical waveguide includes a propagating light waveguide, a coupler including a photonic crystal, and a surface plasmon waveguide, the propagating light waveguide, the coupler, and the surface plasmon waveguide being disposed in one plane along a waveguiding direction.
摘要:
An optical waveguide includes a propagating light waveguide, a coupler including a photonic crystal, and a surface plasmon waveguide, the propagating light waveguide, the coupler, and the surface plasmon waveguide being disposed in one plane along a waveguiding direction.
摘要:
A near-field interaction control element includes a near-field optical waveguide containing particles formed of a metal, a metal anion or a metal cation with a diameter of 0.5 nm or more and 3 nm or less and a dielectric constant of −2.5 or more and −1.5 or less, an electron injector/discharger injecting or discharging an electron into or from the particles contained in the near-field optical waveguide to vary a dielectric constant of the near-field optical waveguide, a near-field light introducing part introducing near-field light into the near-field optical waveguide, and a near-field light emitting part emitting the near-field light having guided through the near-field optical waveguide.
摘要:
A near-field interaction control element includes a near-field optical waveguide containing particles formed of a metal, a metal anion or a metal cation with a diameter of 0.5 nm or more and 3 nm or less and a dielectric constant of −2.5 or more and −1.5 or less, an electron injector/discharger injecting or discharging an electron into or from the particles contained in the near-field optical waveguide to vary a dielectric constant of the near-field optical waveguide, a near-field light introducing part introducing near-field light into the near-field optical waveguide, and a near-field light emitting part emitting the near-field light having guided through the near-field optical waveguide.
摘要:
The brazing filler of the present invention is excellent in wetting properties towards the open end of a ceramic cylinder and a metal sealing cap can be sealed well on the open end. The present brazing filler comprises Ag, Cu and active metal, in which the Cu-active metal compound is contained in an amount of not more than 40% by volume.
摘要:
A cathode includes a diffusion layer, and a porous catalyst layer provided on the diffusion layer. The porous catalyst layer has a thickness not greater than 60 μm, a porosity of 30 to 70% and a pore diameter distribution including a peak in a range of 20 to 200 nm of a pore diameter. A volume of pores having a diameter of 20 to 200 nm is not less than 50% of a pore volume of the porous catalyst layer. The porous catalyst layer contains a supported catalyst comprising 10 to 30% by weight of a fibrous supported catalyst and 70 to 90% by weight of a granular supported catalyst. The fibrous supported catalyst includes a carbon nanofiber having a herringbone structure or a platelet structure. The granular supported catalyst includes a carbon black having 200 to 600 mL/100 g of a dibutyl phthalate (DBP) absorption value.