摘要:
An NC data execution method which permits an efficient checking of the validity/invalidity of NC data through a simple operation. In an NC data execution process, a processor of an automatic programming apparatus reads out NC data, block by block, from a memory (S2), and determines whether or not the read NC data block satisfies an NC data execution interrupt condition, e.g., whether or not the data block contains a specific code (S3). When the interrupt condition is fulfilled, the data block is displayed at an input display field on the screen (S4), and then the NC data execution, including a graphic display operation based on the content of the data block satisfying the interrupt condition, e.g., a display of a tool path and the reading and display of the next block, is automatically interrupted, whereby the operator is allowed to thoroughly check the data block satisfying the interrupt condition. After the data checking, the NC data execution is restarted upon input of an interrupt disable command through the operator's key operation (S5-S7).
摘要:
Any hole shape pattern (HPT) and a machining procedure thereof are specified in dialog fashion and these are registered in a hole-type file (FLD) as a single item of hole-type data. In a case where the registered hole type is designated by a keyboard (14) in the creation of NC data for hole machining, an automatic programming unit (11) causes a dialog screen conforming to the hole type to be displayed on a CRT (13). Hole shape dimensions and tools used in each machining process are specified, and NC data for hole machining is created based on this data.
摘要:
A prompt (MEQ) which indicates whether a machining end-point is (i) a point which coincides with a machining starting point, (ii) a point a predetermined amount .DELTA..alpha. past the machining starting point, or (iii) a point a predetermined amount .DELTA..alpha. short of the machining starting point is included on a dialog screen (DIM) and machining end-point information is entered from a keyboard (12). In response, a processor (11a) of a system main body (11) automatically computes coordinates of the machining from the machining end-point information, the machining starting point and path data, and creates NC data for arriving at the machining end-point along a path specified by the path data.
摘要:
A figure definition method including the steps of displaying a list (11) of the definition statements of already defined figure elements and graphic images (12) of the already defined figures on a display screen; successively displaying, one at a time in a form distinguishable from others, figure definition statements (11a, 11b, 11c . . . ) in the list (11), as well as the corresponding graphic images (12a, 12b, 12c . . . ), whenever a first element selection key (13a) is operated to select a first figure element; then successively displaying, one at a time in a form distinguishable from others, figure definition statements in the list (11), as well as the corresponding graphic images, whenever a second element selection key (13b) is operated, to select a second figure element; and defining another figure element using the selected first and second figure elements.
摘要:
A method of creating NC data including storing various approach/withdrawal patterns in dependence upon a particular zone in which a turret index point/tool exchange position (P.sub.T) is present, the zone being one among zones (ZN.sub.1 -ZN.sub.3) defined by horizonal and vertical axes passing through a point (Q) specified by a safe position coordinate (Z.sub.S) in a longitudinal direction of a workpiece (WK) and a safe position coordinate (X.sub.S) in a direction perpendicular to the longitudinal direction, and in dependence upon a plane to which a cutting starting/end point (P.sub.S) belongs, the plane being one of a plane (LPS) in the longitudinal direction of the workpiece and a plane (TPS) perpendicular to the longitudinal direction belongs. A predetermined pattern is selected from among the stored approach/withdrawal patterns based on the zone to which the turret index point (P.sub.T) actually belongs and the plane to which the cutting starting/end point (P.sub.S) actually belongs. NC data for approach and NC data for withdrawal are created using the selected pattern.
摘要:
An interactive type automatic programming method which facilitates the detection of errors in a part program and permits only a required portion of the modified/edited part program to be re-executed. First, part program statements are displayed on a screen, and every time the operator inputs a one statement execution command (S4) a programming system executes one program statement and displays the result of the execution on the screen (S6, S7). When an executed part program statement is found to be erroneous, the operator inputs a modification command (S5), moves the cursor to specify the program statement to be modified, inputs a program modification command (S13, S15), and then corrects the program statement. In response to an operator's input of a re-execution command (S18), the programming system re-executes only a required portion of the part program beginning with the modified part program statement and ending with a part program statement to be executed next (S19).
摘要:
In an automatic programming apparatus involving NC program data for wire-cut electric discharge machining according to the invention, data specifying an approach path and a departure path, as well as wire-cut machining conditions, are registered in advance. In automatic programming, rather than entering an approach path, departure path and machining conditions separately, only machining profiles (51, 52, . . . ) are successively defined, after which the machining profile data and the registered data are used to originate, for each and every machining profile (51, 52, . . . ), (i) approach NC data, (ii) NC data for moving a wire electrode along the machining profiles (51, 52, . . . ), and (iii) departure NC data.
摘要:
When an item (T.sub.1 or T.sub.2) for revising chamfering or rounding is selected from a menu table (108b) of a tablet device (108), all corner portions (E.sub.1 -E.sub.3) included in profile (A.sub.1) and pertaining to the revision item (e.g., the item for revision rounding) are displayed in a color different from the other portions of the profile. Thereafter, a corner portion (E.sub.1) requiring revision is designated by a graphic cursor (K), whereupon the corner portions (E.sub.2, E.sub.3) other than the designated corner portion return to the original color so that only the designated corner portion (E.sub.1) may be identified for revision. .
摘要:
A method of displaying a structure (SML) three-dimensionally, in which a rectangular parallelepiped (RP), having on each of its sides distances (L.sub.x, L.sub.y, L.sub.z) between minimum and maximum positions along each axis of a structure (SML) is constituted by a set of a number of unit solids, e.g., unit cubes (UC), of the same shape and same dimensions. The structure is represented by information indicating whether each unit solid is part of the structure (SML). Individual ones of the unit solids constituting the structure (SML) are displayed in order starting from unit solids seen on a the front side of the structure. The face of a unit solid overlapping a face of a unit solid already displayed is not displayed; instead, only the visually foremost faces thereof are displayed, thereby displaying a perspective view of the three-dimensional structure (SML).
摘要:
A prescribed menu item on a menu table (108b) is picked to designate a method of defining a figure element, and a predefined figure element displayed on a display screen (106) is picked. A processor (102) defines a new figure element using the picked figure element definition method and the picked figure element, and defines a part profile using figure elements picked in the order of tool motion when the defining of all figure elements is completed. In this case, the processor expresses, in a first format based upon an automatic programming language, figure elements and the part profile as defined, and stores the figure elements and part profile in a storage ares (103b). Using a second format for the figure elements, each point is expressed as the coordinate values thereof, each straight line expressed as the coordinate values of two points, and each circle expressed as the coordinates of the center of the circle and the radius of the circular arc, are stored in a storage area 103c. when there is a request for output of the part profile, the processor (102) outputs the figure elements and the part profile in the automatic programming language using the first format. When a figure element designated by a graphic cursor is identified and when the figure is displayed, processing is performed using the second format.