摘要:
In spectrum measuring equipment the light to be measured is separated by a double-image polarizing element into two polarized wave components whose planes of polarization cross each other perpendicular and which have different optical axes. The two polarized wave components are applied to a dispersing element so that their planes of polarization intersect the direction of light separation at .+-.45.degree. thereto, respectively. The sum of optical powers of the two polarized wave components separated by the dispersing element is measured by a photodetector, so that spectrum measurement independent of the polarization of the light to be measured can be achieved.
摘要:
Spatial phase modulating transparent masks comprising two or more portions having two different optical paths and their production processes are disclosed. The transparent masks are particularly useful as an exposure mask in the production of phase-shifted, distributed feedback (DFB) semiconductor lasers for a single-mode operation. A process for the formation of phase-shifted diffraction gratings or corrugations which comprises exposing a substrate, through the above transparent mask, to exposure radiation is also disclosed. According to the present invention, the phase-shifted diffraction gratings can be easily and directly produced with a high accuracy and reliability.
摘要:
Disclosed is a laser light source device having a laser and an external resonator, wherein as a base, a Faraday rotator is provided at the laser side front of a reflection plane of the resonator so that clockwise and counter-clockwise circular polarizations which have frequencies slightly different to each other are generated, and if a laser such as a semiconductor laser having an eigen-mode having a linear polarization is applied, elements which rotate a polarization by 90 degrees by one emission-and-return through the element, for example, quarter-wave plates, are arranged, The device does not need a strong magnetic field or a strong electric field, and can easily generate lights which are a constant strength. Thus the device can be miniaturized and a high efficiency obtained.
摘要:
An optical apparatus for producing chromatic dispersion. The apparatus includes a virtually imaged phased array (VIPA) generator, a mirror and a lens. The VIPA generator receives an input light at a respective wavelength and produces a corresponding collimated output light traveling from the VIPA generator in a direction determined by the wavelength of the input light, the output light thereby being spatially distinguishable from an output light produced for an input light at a different wavelength. The mirror has a cone shape, or a modified cone shape. The lens focuses the output light traveling from the VIPA generator onto the mirror so that the mirror reflects the output light. The reflected light is directed by the lens back to the VIPA generator. In this manner, the apparatus provides chromatic dispersion to the input light. The modified cone shape of the mirror can be designed so that the apparatus provides a uniform chromatic dispersion to light in the same channel of a wavelength division multiplexed light. The mirror can be moved in a direction perpendicular to an angular dispersion direction of the VIPA generator, to change the amount of chromatic dispersion provided to the input light.
摘要:
A heater coats an optical fiber. In addition, an apparatus, such as an optical switch, a Mach-Zehnder interferometer, or a Michelson interferometer, includes optical fibers transmitting light in optical paths, and 3-dB couplers, coupled to the optical fibers, splitting input light into the optical paths, and recombining output light into output paths. The apparatus also includes the heater coating a portion of one of the optical fibers and heating the one of the optical fibers to change the optical phase of the light traveling in the one of the optical paths. A second heater coats a portion of another of the optical fibers and heats the another of the optical fibers to change the relative optical phase of the light traveling in the one of the optical paths and the another of the optical paths. A detector is coupled to one of the optical paths and detects power of leaked light in the optical path and a heater controller is coupled to the detector and to the heater, and controls the heater based upon the power of the leaked light.
摘要:
A virtually imaged phased array (VIPA) which receives an input light at a respective wavelength, and produces a spatially distinguishable output light in accordance with the wavelength of the input light. The VIPA has first and second surfaces. The second surface has a reflectivity which causes a portion of light incident thereon to be transmitted therethrough. The first and second surfaces are positioned so that the input light is reflected a plurality of times between the first and second surfaces to cause a plurality of lights to be transmitted through the second surface. The plurality of transmitted lights interfere with each other to produce an output light which is spatially distinguishable from an output light produced for an input light having any other wavelength within the continuous range of wavelengths. A spacer element has an approximately zero thermal expansion coefficient and maintains the relative positioning between the first and second surfaces to be constant. Preferably, the magnitude of the thermal expansion coefficient of the spacer element is less than or equal to 10−5/° C. Even more preferable, the magnitude of the thermal expansion coefficient of the spacer element is less than or equal to 10−6/° C.
摘要:
A virtually imaged phased array (VIPA) which receives an input light at a respective wavelength, and produces a spatially distinguishable output light in accordance with the wavelength of the input light. The VIPA has first and second surfaces. The second surface has a reflectivity which causes a portion of light incident thereon to be transmitted therethrough. The first and second surfaces are positioned so that the input light is reflected a plurality of times between the first and second surfaces to cause a plurality of lights to be transmitted through the second surface. The plurality of transmitted lights interfere with each other to produce an output light which is spatially distinguishable from an output light produced for an input light having any other wavelength within the continuous range of wavelengths. A spacer element has an approximately zero thermal expansion coefficient and maintains the relative positioning between the first and second surfaces to be constant. Moreover, an adjusting element is positioned between the first and second surfaces and is adjustable to change the optical distance between the first and second surfaces.
摘要:
A method of modulating a semiconductor laser, a method of stabilizing a self-homodyne optical interferometer and a light modulation apparatus using a semiconductor laser is provided for use, for example, in various optical communication systems. To avoid the adverse affect on a semiconductor laser of wavelength chirping and to facilitate high-speed direct modulation, a predetermined short pulse current is superimposed on a bias current to drive a semiconductor laser, thereby phase-modulating the output light at a high speed, eliminating the phase deviation at the output of the light interferometer of the self-homodyne-type and achieving a stable output from the semiconductor laser. The average intensity of the output light is obtained, thereby applying a feedback to a wavelength of the input light or to a difference in an optical path length of the optical interferometer itself in accordance with the average intensity of the output light in order to correct the phase bias when modulating the intensity. To perform a high-speed stable phase intensity modulation, transmission data is subject to sign conversion in accordance with a predetermined rule and thereafter is subject to differentiation. The differentiated signal is superimposed on a constant bias current as a modulating current pulse to drive a semiconductor laser, and the output thereof is intensity-modulated through the self-homodyne optical interferometer.
摘要:
Transmitters for generating inversely dispersed optical signals to counter chromatic dispersion in optical fibers carrying the optical signals are presented. The transmitters have optical pulse generators which generate in parallel inversely dispersed optical pulses which are combined for output into an optical fiber. Different designs with simple modulators can be used for the optical pulse generator
摘要:
An optical apparatus for producing chromatic dispersion. The apparatus includes a virtually imaged phased array (VIPA) generator, a mirror and a lens. The VIPA generator receives an input light at a respective wavelength and produces a corresponding collimated output light traveling from the VIPA generator in a direction determined by the wavelength of the input light, the output light thereby being spatially distinguishable from an output light produced for an input light at a different wavelength. The mirror has a cone shape, or a modified cone shape. The lens focuses the output light traveling from the VIPA generator onto the mirror so that the mirror reflects the output light. The reflected light is directed by the lens back to the VIPA generator. In this manner, the apparatus provides chromatic dispersion to the input light. The modified cone shape of the mirror can be designed so that the apparatus provides a uniform chromatic dispersion to light in the same channel of a wavelength division multiplexed light. The mirror can be moved in a direction perpendicular to an angular dispersion direction of the VIPA generator, to change the amount of chromatic dispersion provided to the input light.