摘要:
A stack type battery has positive electrode current collector tabs (11) overlapped with each other and welded to a positive electrode current collector terminal (15), and negative electrode current collector tabs (12) overlapped with each other and welded to a negative electrode current collector terminal (16). The positive electrode current collector tabs (11) existing between the positive electrode plates (1) and an end part (15a) of the positive electrode current collector terminal (15) that is on the positive electrode plate (1) side are welded to each other and/or the negative electrode current collector tabs (12) existing between the negative electrode plates (2) and an end part (16a) of the negative electrode current collector terminal (16) that is on a negative electrode plate (2) side are welded to each other.
摘要:
A penetrating portion (15P) is provided partially at a location in a positive electrode current collector terminal (15) to which positive electrode lead tabs (11) (electrode plate lead tabs) are joined, to form a current-collector-terminal-absent region (penetrating portion (15P)) and a current-collector-terminal-present region that are aligned in a perpendicular direction (a widthwise direction) to a connection direction of the positive electrode lead tabs (11). Only the plurality of the positive electrode lead tabs (11) are joined at a center weld point (32M) (first joining spot) in the current-collector-terminal-absent region, and the positive electrode lead tabs (11) are joined to the positive electrode current collector terminal 15 at each of left-side and right-side weld points 32L and 32R (second joining spot) in the current-collector-terminal-present region.
摘要:
A stack type battery has a plurality of positive electrode plates (1) and a plurality of negative electrode plates (2), which are alternately stacked one on the other with separators (3) interposed therebetween. It also has positive electrode leads (11) and negative electrode leads (12) protruding from the respective electrode plates (1, 2) and being stacked and joined to a positive electrode current collector terminal (15) and a negative electrode current collector terminal (16), respectively. Peripheral portions of the separators that face each other across each of the positive electrode plates (1) are welded to form a pouch-type separator (3), and the positive electrode leads (11) are joined to each other at weld points (31W) in a region thereof facing the separator (3).
摘要:
A battery module has a plurality of prismatic batteries (2) stacked in a thickness direction. Two plates (3, 4) are provided between each of the batteries (2), and each of the batteries (2) is compressed by shifting the two plates (3, 4) in directions away from each other. A pair of frame members (10, 20) having opposing surfaces (11, 21) extending along the stacking direction of the batteries (2) are disposed face to face so as to sandwich the batteries (2) in a direction perpendicular to the stacking direction of the batteries. Wedge-shaped spacers (12, 22) inserted between the two plates (3, 4) are provided respectively on the opposing surfaces. By narrowing the gap between the pair of frame members (10, 20), the spacers (12, 22) are allowed to advance inwardly between the two plates (3, 4) so that the two plates are shifted in directions away from each other, whereby the batteries are compressed.
摘要:
A laminate type battery includes a laminate battery case and an electrode assembly. The laminate battery case includes two laminate films each having a metal layer and plastic layers provided on both faces of the metal layer, and has a welded portion in which peripheral edges of the two laminate films are welded to each other. The electrode assembly is enclosed in the laminate battery case, and has a positive electrode plate, a negative electrode plate, and a separator disposed therebetween. An internal gas pressure sensing portion, in which the inner plastic layer of each of the laminate films is absent and the metal layers are in contact with each other so as to be in an electrically conductive state, is formed in a portion of the welded portion. A voltage detection hole, in which the outer plastic layer is absent and the metal layer is exposed, is formed in a surface of each of the two laminate films.
摘要:
A battery module has a plurality of prismatic batteries (2) stacked in a thickness direction. Two plates (3, 4) are provided between each of the batteries (2), and each of the batteries (2) is compressed by shifting the two plates (3, 4) in directions away from each other. A pair of frame members (10, 20) having opposing surfaces (11, 21) extending along the stacking direction of the batteries (2) are disposed face to face so as to sandwich the batteries (2) in a direction perpendicular to the stacking direction of the batteries. Wedge-shaped spacers (12, 22) inserted between the two plates (3, 4) are provided respectively on the opposing surfaces. By narrowing the gap between the pair of frame members (10, 20), the spacers (12, 22) are allowed to advance inwardly between the two plates (3, 4) so that the two plates are shifted in directions away from each other, whereby the batteries are compressed.
摘要:
A stack type battery has a stacked electrode assembly (10) in which a plurality of positive electrode plates (1) and a plurality of negative electrode plates (2) are alternately stacked one another across separators. Each one of pairs of the separators adjacent to each other in a stacking direction has a bonded portion (4) in which the separators are bonded to each other in at least a portion of a perimeter portion thereof, so as to form a pouch-type separator (3). The proportion of the bonded portion (4) of one of the pouch-type separators 3 (low blocking rate pouch-type separator (3L)) located in a stacking direction-wise central region of the stacked electrode assembly (10) is made smaller than the proportion of the bonded portion (4) of each of the pouch-type separators 3 (high blocking rate pouch-type separator 3H) located in both stacking direction-wise end portions of the stacked electrode assembly (10).
摘要:
The present invention aims to provide a battery that includes electrode terminals passing through a lid, in which the lid and electrode terminals are securely insulated and sealed while being solidly fixed to each other without using an insulation-forming body or packing. To this end, a lid has upwardly-protruding protrusions formed therein. Through-holes are formed in the protrusions and tapered so as to become narrower toward the top relative to the bottom. Fitting portions forming the middle portions of a cathode terminal board and an anode terminal board are tapered to fit into the through-holes. Heat-welding tape is introduced between the outer faces of the fitting portions and the inner faces of the through-holes. The heat-welding tape is made up of an insulating substrate with heat-welding layers layered on both sides thereof.
摘要:
A plurality of positive electrode plates (1) and a plurality of negative electrode plates are alternately stacked with separators interposed between the positive and negative electrodes. Positive electrode leads (11) and negative electrode leads extending outward from the respective electrode plates are respectively stacked on and joined to a positive electrode current collector terminal and a negative electrode current collector terminal to form a stack type battery. An incision (35) is formed in the positive electrode lead (11) so that a current (C11) passing through the lead (11) is branched into a plurality (two) of paths (D1, D2) by the incision (35), and the maximum current density of one (D1) of the plurality of paths (D1, D2) is equal to or greater 1.5 times of the maximum current density of the other path (D2).
摘要:
A prismatic secondary battery is a prismatic lithium-ion battery including a stack-type electrode assembly in which square positive and negative electrode plates are stacked with separators interposed therebetween. The positive electrode plates are arranged inside a bag-like separator. The width of the separator protruding from an end portion of each positive electrode plate on a non-joined side of the separator is greater than that of the separator protruding from an end portion of the positive electrode plate on a joined side of the separator. The heat-shrinkage rate of the separator in a direction vertical to the non-joined side is greater than that of the separator in a direction parallel to the non-joined side. Short circuiting between the positive and negative electrode plates due to heat shrinkage or rupture of the separator is prevented even when abnormal heat generation occurs in the battery.