Abstract:
A multi-stage bubble-column vapor mixture condenser comprises at least a first stage and a second stage. Each stage includes a carrier-gas inlet and a carrier-gas outlet, as well as a condenser chamber containing a condensing bath in fluid communication with the carrier-gas inlet and the carrier-gas outlet. The carrier-gas inlet is positioned to bubble carrier gas from the carrier-gas inlet up through the condensing bath, overcoming a hydrostatic head of the condensing bath. The carrier-gas outlet is positioned with an opening for carrier-gas extraction above the condensing bath, wherein the first-stage carrier-gas outlet is in fluid communication with the carrier-gas inlet of the second stage to facilitate flow of the carrier gas through the condensing bath in the condenser chamber of the first stage and then through the condensing bath in the condenser chamber of the second stage.
Abstract:
A carrier gas is directed through a humidification chamber in a humidifier, where the carrier gas flow is directly contacted with a feed liquid to humidify the carrier gas with water evaporated from the feed liquid, producing a humidified gas flow. The humidified gas flow is then compressed in a compressor and then directed through a dehumidification chamber in a dehumidifier, where the compressed humidified gas flow is dehumidified to condense water from the compressed humidified gas flow. The dehumidified gas flow is then expanded in an expander, wherein the expansion of the dehumidified gas flow generates motion (e.g., rotation of a shaft), and wherein the motion generated in the expander is transferred to the compressor, where the motion compresses the humidified gas flow. Heat is also removed from the expanded dehumidified gas flow and transferred to compressed dehumidified gas flow upstream from the expander.
Abstract:
Cations that can precipitate from an aqueous composition to produce scaling are sequestered by adding a multi-dentate ligand to the aqueous composition. The multi-dentate ligand bonds with the cation to form a non-scaling ionic complex; and the aqueous solution with the ionic complex is used in a process that produces substantially pure water from the aqueous composition, where the cation, absent formation of the ionic complex, is subject to scaling. The pH of the aqueous composition (or a brine including components of the aqueous composition) is then reduced to release the cation from the multi-dentate ligand; and the multi-dentate ligand, after the cation is released, is then reused in a predominantly closed loop.
Abstract:
A bubble-column-humidification apparatus includes a humidifier chamber configured to receive the feed liquid from a feed-liquid source. A bubble distributor is contained in the humidifier chamber; and a humidifier bath of the feed liquid is also contained in the humidifier chamber above the bubble distributor. The feed liquid forms a continuous and majority phase of the humidifier bath and fills a majority of the humidifier chamber, which has a width at least twice as great as its height. A lower gas region is located below the bubble distributor and the humidifier bath in the humidifier chamber and is configured to receive a carrier gas from a carrier-gas source and to disperse the carrier gas through the bubble distributor. The carrier gas in the lower gas region has a pressure greater than the hydrostatic pressure of the humidifier bath.
Abstract:
A feed liquid flows into a second-stage humidifier chamber to form a second-stage humidifier bath. A first remnant of the feed liquid from the second-stage humidifier chamber then flows into a first-stage humidifier chamber to form a first-stage humidifier bath having a temperature lower than that of the second-stage bath. A second remnant of the feed liquid is then removed from the first-stage humidifier. Meanwhile, a carrier gas is injected into and bubbled through the first-stage humidifier bath, collecting a vaporizable component in vapor form from the first remnant of the feed liquid to partially humidify the carrier gas. The partially humidified carrier gas is then bubbled through the second-stage humidifier bath, where the carrier gas collects more of the vaporizable component in vapor form from the feed liquid to further humidify the carrier gas before the humidified carrier gas is removed from the second-stage humidifier chamber.
Abstract:
A multi-stage bubble-column vapor mixture condenser comprises at least a first stage and a second stage. Each stage includes a carrier-gas inlet and a carrier-gas outlet, as well as a condenser chamber containing a condensing bath in fluid communication with the carrier-gas inlet and the carrier-gas outlet. The carrier-gas inlet is positioned to bubble carrier gas from the carrier-gas inlet up through the condensing bath, overcoming a hydrostatic head of the condensing bath. The carrier-gas outlet is positioned with an opening for carrier-gas extraction above the condensing bath, wherein the first-stage carrier-gas outlet is in fluid communication with the carrier-gas inlet of the second stage to facilitate flow of the carrier gas through the condensing bath in the condenser chamber of the first stage and then through the condensing bath in the condenser chamber of the second stage.
Abstract:
A feed liquid flows into a second-stage humidifier chamber to form a second-stage humidifier bath. A first remnant of the feed liquid from the second-stage humidifier chamber then flows into a first-stage humidifier chamber to form a first-stage humidifier bath having a temperature lower than that of the second-stage bath. A second remnant of the feed liquid is then removed from the first-stage humidifier. Meanwhile, a carrier gas is injected into and bubbled through the first-stage humidifier bath, collecting a vaporizable component in vapor form from the first remnant of the feed liquid to partially humidify the carrier gas. The partially humidified carrier gas is then bubbled through the second-stage humidifier bath, where the carrier gas collects more of the vaporizable component in vapor form from the feed liquid to further humidify the carrier gas before the humidified carrier gas is removed from the second-stage humidifier chamber.
Abstract:
A multi-stage bubble-column vapor mixture condenser comprises at least a first stage and a second stage. Each stage includes a carrier-gas inlet and a carrier-gas outlet, as well as a condenser chamber containing a condensing bath in fluid communication with the carrier-gas inlet and the carrier-gas outlet. The carrier-gas inlet is positioned to bubble carrier gas from the carrier-gas inlet up through the condensing bath, overcoming a hydrostatic head of the condensing bath. The carrier-gas outlet is positioned with an opening for carrier-gas extraction above the condensing bath, wherein the first-stage carrier-gas outlet is in fluid communication with the carrier-gas inlet of the second stage to facilitate flow of the carrier gas through the condensing bath in the condenser chamber of the first stage and then through the condensing bath in the condenser chamber of the second stage.
Abstract:
A feed liquid flows into a second-stage humidifier chamber to form a second-stage humidifier bath. A first remnant of the feed liquid from the second-stage humidifier chamber then flows into a first-stage humidifier chamber to form a first-stage humidifier bath having a temperature lower than that of the second-stage bath. A second remnant of the feed liquid is then removed from the first-stage humidifier. Meanwhile, a carrier gas is injected into and bubbled through the first-stage humidifier bath, collecting a vaporizable component in vapor form from the first remnant of the feed liquid to partially humidify the carrier gas. The partially humidified carrier gas is then bubbled through the second-stage humidifier bath, where the carrier gas collects more of the vaporizable component in vapor form from the feed liquid to further humidify the carrier gas before the humidified carrier gas is removed from the second-stage humidifier chamber.
Abstract:
Cations that can precipitate from an aqueous composition to produce scaling are sequestered by adding a multi-dentate ligand to the aqueous composition. The multi-dentate ligand bonds with the cation to form a non-scaling ionic complex; and the aqueous solution with the ionic complex is used in a process that produces substantially pure water from the aqueous composition, where the cation, absent formation of the ionic complex, is subject to scaling. The pH of the aqueous composition (or a brine including components of the aqueous composition) is then reduced to release the cation from the multi-dentate ligand; and the multi-dentate ligand, after the cation is released, is then reused in a predominantly closed loop.