摘要:
A method is provided of driving an electronic device comprising an array of device elements, each device element comprising particles which are moved to control a device element state, and each device element comprising a collector electrode, and an output electrode. The method comprises: in a reset phase, applying a first set of control signals to control the device to move the particles to the a reset electrode; and in an addressing phase, applying a second set of control signals to control the device to move the particles from the reset electrode such that a desired number of particles are at the output electrode. The second set of control signals comprises a pulse waveform oscillating between first and second voltages in which the first voltage is for attracting the particles to the reset electrode and the second voltage is for attracting the particles from the reset electrode to the output electrode, and wherein the duty cycle of the pulse waveform determines the proportion of particles transferred to the output electrode in the addressing phase. This control method provides well-controlled packets of particles which are collected in a vortex at the reset electrode before being passed on, in part, towards the output electrode (for example via the gate electrode).
摘要:
A method is provided of driving an electronic device comprising an array of device elements, each device element comprising particles which are moved to control a device element state, and each device element comprising a collector electrode, and an output electrode. The method comprises: in a reset phase, applying a first set of control signals to control the device to move the particles to the a reset electrode; and in an addressing phase, applying a second set of control signals to control the device to move the particles from the reset electrode such that a desired number of particles are at the output electrode. The second set of control signals comprises a pulse waveform oscillating between first and second voltages in which the first voltage is for attracting the particles to the reset electrode and the second voltage is for attracting the particles from the reset electrode to the output electrode, and wherein the duty cycle of the pulse waveform determines the proportion of particles transferred to the output electrode in the addressing phase. This control method provides well-controlled packets of particles which are collected in a vortex at the reset electrode before being passed on, in part, towards the output electrode (for example via the gate electrode).
摘要:
The present invention relates to a drive method for an electrophoretic cell and a device adapted to implement the method. The cell comprises a first storage electrode (24), a second storage electrode (22), a first target area electrode (28), a second target area electrode (30), a first type of particle (32) and a second type of particles (33), said second type of particles being of opposite polarity to the first type of particles. An area (31) extending between the target area electrodes (28, 30) is a target area. The method comprises a reset phase (110), wherein said first and second type of particle are reset to determined reset positions, a first write phase (120), wherein the first type of particles are moved to and/or from the storage electrodes and change in amount in said target area (31), a second write phase (140) similar to the first write phase but for the second type of particles, and a spread phase (150) so that the particles in said target area (31) distribute and mix. The method allows for short distance movements and two particle type in the same cell can be written comparatively fast.
摘要:
The present invention relates to a drive method for an electrophoretic cell and a device adapted to implement the method. The cell comprises a first storage electrode (24), a second storage electrode (22), a first target area electrode (28), a second target area electrode (30), a first type of particle (32) and a second type of particles (33), said second type of particles being of opposite polarity to the first type of particles. An area (31) extending between the target area electrodes (28, 30) is a target area. The method comprises a reset phase (110), wherein said first and second type of particle are reset to determined reset positions, a first write phase (120), wherein the first type of particles are moved to and/or from the storage electrodes and change in amount in said target area (31), a second write phase (140) similar to the first write phase but for the second type of particles, and a spread phase (150) so that the particles in said target area (31) distribute and mix. The method allows for short distance movements and two particle type in the same cell can be written comparatively fast.
摘要:
A driving circuit for driving an in-plane moving particle device has a pixel (P) comprising movable charged particles (PA). The pixel (P) has a reservoir electrode (RE), a display electrode (DE), and a gate electrode (GE) laterally placed in-between the reservoir electrode (RE) and the display electrode (DE). The driving circuit (DC) comprises a driver (DR), a controller (CO) which receives an input signal (OS) representing an image to be displayed on the moving particle device. The controller (CO) controls the driver (DR) to supply a first voltage difference (VD1) between the reservoir electrode (RE) and the gate electrode (GE) and a second voltage difference (VD2) between the gate electrode (GE) and the display electrode (DE). The image is written to the pixel (P) during a write phase (TW) by moving particles (PA) from the reservoir electrode (RE) via the gate electrode (GE) to the display electrode (DE) if the optical state of the pixel (P) should change in conformity with the image. If during the write phase (TW) the optical state of the pixel (P) should not change, the first voltage difference (VD1) has a first write level and the second voltage difference (VD2) has a second write level, both write levels are selected to repulse the particles (PA) from the gate electrode (GE). During a repulsion period (TR), the first voltage difference (VD1) has a level more repulsive to the particles than the first write level, and/or the second voltage difference (VD2) has a level more repulsive than the second write level.
摘要:
A system (102) comprising a box (104) for implanting in a mammal body part (106), which box is provided with a first electrical contact (110, 121, 114, 116, 118, 120), and a module (108) for accommodating in the box, which module is provided with a second electrical contact (122, 124, 126) for cooperation with said first electrical contact. The first electrical contact and the second electrical contact are mutually movable, at least in a stationary accommodation of the module in the box, between a contact position in which said first and second electrical contacts are electrically connected, and a non-contact position in which said first and second electrical contacts are separated from each other.
摘要:
A method and a control system (20) are provided for determining a relation between stimulation settings for a brain stimulation probe (10) and a corresponding V-field. The brain stimulation probe (10) comprises multiple stimulation electrodes (11). The V-field is an electrical field in brain tissue surrounding the stimulation electrodes (11). The method comprises sequentially applying a test current to n stimulation electrodes (11), n being a number between 2 and the number of stimulation electrodes (11) of the brain stimulation probe (10), for each test current at one of the n stimulation electrodes (11), measuring a resulting excitation voltage at m stimulation electrodes, m being a number between 2 and the number of stimulation electrodes (11) of the brain stimulation probe (10), from the stimulation settings and the measured excitation voltages, deriving an (m*{acute over (η)}) coupling matrix, an element (q, p) in the coupling matrix reflecting an amount of electrical impedance between two of the stimulation electrodes (11), and using the coupling matrix for determining the relation between the stimulation settings and the corresponding V-field.
摘要:
A system for communicating information between at least two medical devices implanted within the body of a subject using volume conduction of electrical signals as a means of communication and wherein one of the implanted medical devices is configured to provide electrical stimulation to the tissue is disclosed. The system comprises a first implant device having at least two transmit electrodes configured to transmit electrical stimulation pulses, wherein one of the electrodes may be a common return electrode, an encoding means configured to employ a channel as a transmitter transmission medium for stimulation pulses and encoding the information into the stimulation pulses, a second implant device having at least two receive electrodes configured to receive the transmitted stimulation pulses with encoded information, and a decoding means configured to decode the information encoded into the stimulation pulses. The disclosed system provides reliable and efficient communication between implantable receiver devices.
摘要:
The invention relates to a sensing apparatus for sensing an object. The sensing apparatus comprises an ultrasound unit (11) for ultrasonically sensing the object (4), an electrical energy application unit (9) for applying electrical energy to the object (4), and an ultrasound unit shielding element (16) for electrically shielding the ultrasound unit (11), wherein the ultrasound unit shielding element (16) is electrically connected to the electrical energy application unit (9). Since the ultrasound unit shielding element electrically shields the ultrasound unit, the ultrasound sensing of the object is less influenced by a capacitive coupling of the application of electrical energy, in particular, of an RF signal which may be used for applying the electrical energy, into the ultrasound sensing. A further reduction of this influence is achieved by electrically connecting the ultrasound unit shielding element to the electrical energy application unit.
摘要:
An electronic apparatus with a DC power source and power-consuming electronic circuits and a method of transferring power between these components include converting the DC voltage of the power source into an AC voltage which is then transferred via a connector to the electronic circuits.