摘要:
A tungsten carbide compact of an earth boring bit has a cutting tip that is generally chisel-shaped with substantially flat flanks converging to an elongated crest. One of the flanks is smaller and has a greater included angle relative to the axis of the compact than the other flank. Shoulders extend from opposite ends of the crest. One shoulder has a radius of curvature that is smaller than the other shoulder.
摘要:
An earth-boring bit, and a method of increasing the durability of the same, which includes the step providing a pliable sheet of a hardfacing matrix material. The pliable sheet of hardfacing material has a nickel and chromium matrix combined with a first element. The first element is selected from a group consisting of spherical sintered tungsten carbide, spherical cast tungsten carbide, and metallic glass. The hardfacing matrix material sheet is placed on a preselected surface of the drill bit. The hardfacing matrix material sheet is then fusion bonded to the drill bit.
摘要:
The present invention includes consolidated hard materials, methods for producing them, and industrial drilling and cutting applications for them. A consolidated hard material may be produced using hard particles such as B4C or carbides or borides of W, Ti, Mo, Nb, V, Hf, Ta, Zr, and Cr in combination with an iron-based, nickel-based, nickel and iron-based, iron and cobalt-based, aluminum-based, copper-based, magnesium-based, or titanium-based alloy for the binder material. Commercially pure elements such as aluminum, copper, magnesium, titanium, iron, or nickel may also be used for the binder material. The mixture of the hard particles and the binder material may be consolidated at a temperature below the liquidus temperature of the binder material using a technique such as rapid omnidirectional compaction (ROC), the Ceracon™ process, or hot isostatic pressing (HIP). After sintering, the consolidated hard material may be treated to alter its material properties.
摘要:
The present invention includes consolidated hard materials, methods for producing them, and industrial drilling and cutting applications for them. A consolidated hard material may be produced using hard particles such as B4C or carbides or borides of W, Ti, Mo, Nb, V, Hf, Ta, Zr, and Cr in combination with an iron-based, nickel-based, nickel and iron-based, iron and cobalt-based, aluminum-based, copper-based, magnesium-based, or titanium-based alloy for the binder material. Commercially pure elements such as aluminum, copper, magnesium, titanium, iron, or nickel may also be used for the binder material. The mixture of the hard particles and the binder material may be consolidated at a temperature below the liquidus temperature of the binder material using a technique such as rapid omnidirectional compaction (ROC), the Ceracon™ process, or hot isostatic pressing (HIP). After sintering, the consolidated hard material may be treated to alter its material properties.
摘要:
A drill but having a drill body with a cutting tip, an axis of symmetry, and a plurality of flutes wherein said flutes have a rake surface at said cutting tip. The cutting tip includes a plurality of side blades between said flutes and joined at a web, a plurality of flank surfaces extending from an outer diameter of said cutting tip to said axis of symmetry, and a plurality of primary cutting edges at the intersection of said flank surfaces with said rake surfaces. Both the rake and flank surfaces have extensions which would intersect each other at an intersection. The primary cutting edges include an angular surface formed on the forward end of said rake surfaces which is located such that the length of said extension of said rake surface measured between said angular surface and said intersection is a first predetermined value and the length of said extension of said flank surface measured between said angular surface and said intersection is a second predetermined value. The primary cutting edges also have a hardened layer formed from the outer surface of the primary cutting edge.
摘要:
The present invention relates to compositions and methods for forming a bit body for an earth-boring bit. The bit body may comprise hard particles, wherein the hard particles comprise at least one carbide, nitride, boride, and oxide and solid solutions thereof, and a binder binding together the hard particles. The binder may comprise at least one metal selected from cobalt, nickel, and iron, and, optionally, at least one melting point reducing constituent selected from a transition metal carbide in the range of 30 to 60 weight percent, boron up to 10 weight percent, silicon up to 20 weight percent, chromium up to 20 weight percent, and manganese up to 25 weight percent, wherein the weight percentages are based on the total weight of the binder. In addition, the hard particles may comprise at least one of (i) cast carbide (WC+W2C) particles, (ii) transition metal carbide particles selected from the carbides of titanium, chromium, vanadium, zirconium, hafnium, tantalum, molybdenum, niobium, and tungsten, and (iii) sintered cemented carbide particles.
摘要:
An abrasive wear-resistant material includes a matrix material and a plurality of −40/+80 ASTM mesh dense sintered carbide pellets. A rotary drill bit having an exterior surface and an abrasive wear-resistant material disposed on at least a portion of the exterior surface of the bit body is provided. Methods for applying an abrasive wear-resistant material to a surface of a drill bit are also disclosed.
摘要:
Methods of forming bit bodies for earth-boring bits include assembling green components, brown components, or fully sintered components, and sintering the assembled components. Other methods include isostatically pressing a powder to form a green body substantially composed of a particle-matrix composite material, and sintering the green body to provide a bit body having a desired final density. Methods of forming earth-boring bits include providing a bit body substantially formed of a particle-matrix composite material and attaching a shank to the body. The body is provided by pressing a powder to form a green body and sintering the green body. Earth boring Earth-boring bits include a unitary structure substantially formed of a particle-matrix composite material. The unitary structure includes a first region configured to carry cutters and a second region that includes a threaded pin. Earth-boring bits include a shank attached directly to a body substantially formed of a particle-matrix composite material.
摘要:
Methods of forming earth-boring rotary drill bits include providing a bit body, providing a shank that is configured for attachment to a drill string, and attaching the shank to the bit body. Providing a bit body includes providing a green powder component having a first region having a first composition and a second region having a second, different composition, and at least partially sintering the green powder component. Other methods include providing a powder mixture, pressing the powder mixture to form a green component, and sintering the green component to a final density. A shank is provided that includes an aperture, and a feature is machined in a surface of the bit body. The aperture is aligned with the feature, and a retaining member is inserted through the aperture. An earth-boring bit includes a bit body comprising a particle-matrix composite material including a plurality of hard particles dispersed throughout a matrix material. A shank is attached to the bit body using a retaining member.
摘要:
Earth-boring rotary drill bits include bit bodies comprising a composite material including a plurality of hard phase regions or particles dispersed throughout a titanium or titanium-based alloy matrix material. The bits further include a cutting structure disposed on a face of the bit body. In some embodiments, the bit bodies may include a plurality of regions having differing material compositions. For example, the bit bodies may include a first region comprising a plurality of hard phase regions or particles dispersed throughout a titanium or titanium-based alloy matrix material, and a second region comprising a titanium or a titanium-based alloy material. Methods for forming such drill bits include at least partially sintering a plurality of hard particles and a plurality of particles comprising titanium or a titanium-based alloy material to form a bit body comprising a particle-matrix composite material. A shank may be attached directly to the bit body.