摘要:
Coaxial disk armatures, counter-rotating through an axial magnetic field, act as electrolysis electrodes and high shear centrifugal impellers for an axial feed. The feed can be carbon dioxide, water, methane, or other substances requiring electrolysis. Carbon dioxide and water can be processed into syngas and ozone continuously, enabling carbon and oxygen recycling at power plants. Within the space between the counter-rotating disk electrodes, a shear layer comprising a fractal tree network of radial vortices provides sink flow conduits for light fractions, such as syngas, radially inward while the heavy fractions, such as ozone and elemental carbon flow radially outward in boundary layers against the disks and beyond the disk periphery, where they are recovered as valuable products, such as carbon nanotubes.
摘要:
An RF inductor such as a Tesla antenna splices nanotube ends together to form a nanostructure in a polymer foam matrix. High Internal Phase Emulsion (HIPE) is gently sheared and stretched in a reactor comprising opposed coaxial counter-rotating impellers, which parallel-align polymer chains and also carbon nanotubes mixed with the oil phase. Stretching and forced convection prevent the auto-acceleration effect. Batch and continuous processes are disclosed. In the batch process, a fractal radial array of coherent vortices in the HIPE is preserved when the HIPE polymerizes, and helical nanostructures around these vortices are spliced by microhammering into longer helices. A disk radial filter produced by the batch process has improved radial flux from edge to center due to its area-preserving radial vascular network. In the continuous process, strips of HIPE are pulled from the periphery of the reactor continuously and post-treated by an RF inductor to produce cured conductive foam.
摘要:
An improvement is described for the processing of biological material in a continuous stream by the application of radiant energy taken from the wavelengths from infrared to ultraviolet, and its absorption by a feedstock in a workspace of featuring controlled turbulence created by one or more counter-rotating disk impellers. The absorbed energy and the controlled turbulence patterns create a continuous process of productive change in a feed into the reactor, with separated light and heavy product output streams flowing both inward and outward from the axis in radial counterflow. The basic mechanism of processing can be applied to a wide range of feedstocks, from the promotion of the growth of algae to make biofuel or other forms of aquaculture, to a use in the controlled combustion of organic material to make biochar.
摘要:
An improvement is described for the processing of biological material in a continuous stream by the application of radiant energy taken from the wavelengths from infrared to ultraviolet, and its absorption by a feedstock in a workspace of featuring controlled turbulence created by one or more counter-rotating disk impellers. The absorbed energy and the controlled turbulence patterns create a continuous process of productive change in a feed into the reactor, with separated light and heavy product output streams flowing both inward and outward from the axis in radial counterflow. The basic mechanism of processing can be applied to a wide range of feedstocks, from the promotion of the growth of algae to make biofuel or other forms of aquaculture, to a use in the controlled combustion of organic material to make biochar.
摘要:
An RF inductor such as a Tesla antenna splices nanotube ends together to form a nanostructure in a polymer foam matrix. High Internal Phase Emulsion (HIPE) is gently sheared and stretched in a reactor comprising opposed coaxial counter-rotating impellers, which parallel-align polymer chains and also carbon nanotubes mixed with the oil phase. Stretching and forced convection prevent the auto-acceleration effect. Batch and continuous processes are disclosed. In the batch process, a fractal radial array of coherent vortices in the HIPE is preserved when the HIPE polymerizes, and helical nanostructures around these vortices are spliced by microhammering into longer helices. A disk radial filter produced by the batch process has improved radial flux from edge to center due to its area-preserving radial vascular network. In the continuous process, strips of HIPE are pulled from the periphery of the reactor continuously and post-treated by an RF inductor to produce cured conductive foam.
摘要:
Coaxial disk armatures, counter-rotating through an axial magnetic field, act as electrolysis electrodes and high shear centrifugal impellers for an axial feed. The feed can be carbon dioxide, water, methane, or other substances requiring electrolysis. Carbon dioxide and water can be processed into syngas and ozone continuously, enabling carbon and oxygen recycling at power plants. Within the space between the counter-rotating disk electrodes, a shear layer comprising a fractal tree network of radial vortices provides sink flow conduits for light fractions, such as syngas, radially inward while the heavy fractions, such as ozone and elemental carbon flow radially outward in boundary layers against the disks and beyond the disk periphery, where they are recovered as valuable products, such as carbon nanotubes.