Abstract:
An emergency mode is provided in a portable electronic device for locating a survivor in a disaster. The device includes a wireless antenna to transmit and receive wireless signals; a memory to store one or more identifiers; a user interface to receive a command that enables the emergency mode. The device also includes one or more processors, which, in response to the command, detect via the wireless receiver a predetermined identifier that matches a stored identifier identifying a sender of the predetermined identifier as a trusted node. When the predetermined identifier and a timing measurement frame are received from the trusted node, the device sends a response to the trusted node to indicate its presence.
Abstract:
Modulation schemes that use dual sub-carrier to reliably transmit physical layer related signaling information and/or data in high efficiency wireless local area network (HE WLAN) are proposed. The proposed schemes can be implemented with low complexity and provide better performance than existing modulation schemes used in WLAN that are based on IEEE 802.11/a/b/g/n/ac standards. The proposed schemes enhance the reliability of transmissions, especially under narrow band interferences. In accordance with a novel aspect, dual subcarrier modulation (DCM) is introduced in HE WLAN. DCM can introduce frequency diversity into OFDM systems by transmitting the same information on two subcarriers separated in frequency. A DCM indication scheme is used such that both encoding and decoding of DCM is really simple.
Abstract translation:提出了使用双子载波在高效率无线局域网(HE WLAN)中可靠传输物理层相关信令信息和/或数据的调制方案。 所提出的方案可以以低复杂度实现,并且比基于IEEE 802.11 / a / b / g / n / ac标准的WLAN中使用的现有调制方案提供更好的性能。 所提出的方案增强了传输的可靠性,特别是在窄带干扰下。 根据一个新颖的方面,在HE WLAN中引入了双副载波调制(DCM)。 DCM可以通过在频率上分离的两个子载波上发送相同的信息来将频率分集引入OFDM系统。 使用DCM指示方案,使得DCM的编码和解码都非常简单。
Abstract:
A method of direction finding (DF) positioning involving main lobe and grating lobe identification in a wireless communication network is proposed. A receiver performs DF algorithm on radio signals associated with multiple antennas over a first channel frequency and estimates a first set of DF solutions. The receiver performs DF algorithm on radio signals associated with multiple antennas over a second channel frequency and estimates a second set of DF solutions. The receiver then identifies the correct DF solution (e.g., the main lobe direction) by comparing the first set of DF solutions and the second set of DF solutions.
Abstract:
A method of direction finding (DF) positioning involving main lobe and grating lobe identification in a wireless communication network is proposed. A receiver performs DF algorithm on radio signals associated with multiple antennas over a first channel frequency and estimates a first set of DF solutions. The receiver performs DF algorithm on radio signals associated with multiple antennas over a second channel frequency and estimates a second set of DF solutions. The receiver then identifies the correct DF solution (e.g., the main lobe direction) by comparing the first set of DF solutions and the second set of DF solutions.
Abstract:
A method of transmitting and receiving a HE PPDU and perform channel estimation enhancement is proposed. The HE PPDU comprises legacy preamble, HE-STF, HE-LTF, and data. A beam-change indication indicates if the pre-multiplied beamforming Q-matrix is changed from legacy preamble to H-SFT, HE-LTF, and data portion. A value of 1 indicates that Q matrix is changed. A value of 0 indicates that Q matrix is unchanged and receiver should be safe to combine L-LTF and HE-LTF. The beam-change indication can be used to significantly enhance channel estimation at receiver. When there is no beam-change, receiver does not change operation during HE-STF and HE-LTF such that the channel estimations can rely on the combination of L-LTFs, L-SIG, RL-SIG, HE-SIGAs and HE-LTF.
Abstract:
A method of spatial reuse with opportunistic transmit power control (TPC) and clear channel assessment (CCA) is proposed. In the opportunistic TPC and CCA, a spatial reuse station (SR-STA) gains enough knowledge in certain situation for more aggressive spatial reuse such that its transmit power may be adjusted to meet the spatial reuse conditions based on the received OBSS PPDU and the corresponding spatial reuse parameter (SRP). Both Type 1 SRP and Type 2 SRP are defined. In one example, the Type 1 or Type 2 SRP is a 5-bit parameter carried in the HE-SIG-A field of the OBSS PPDU, which can be a trigger frame, a response frame, a request-to-send (RTS)/clear-to-send (CTS) frame, and a data frame.
Abstract:
A wireless communicating method includes: performing one resource unit allocation upon a channel; and allocating a first resource unit and a second resource unit in said one resource unit allocation to a station, wherein the first resource unit is different from the second resource unit. By using the wireless communication method, throughput rate can be improved.
Abstract:
A method of transmitting and receiving a HE PPDU and perform channel estimation enhancement is proposed. The HE PPDU comprises legacy preamble, HE-STF, HE-LTF, and data. A beam-change indication indicates if the pre-multiplied beamforming Q-matrix is changed from legacy preamble to H-SFT, HE-LTF, and data portion. A value of 1 indicates that Q matrix is changed. A value of 0 indicates that Q matrix is unchanged and receiver should be safe to combine L-LTF and HE-LTF. The beam-change indication can be used to significantly enhance channel estimation at receiver. When there is no beam-change, receiver does not change operation during HE-STF and HE-LTF such that the channel estimations can rely on the combination of L-LTFs, L-SIG, RL-SIG, HE-SIGAs and HE-LTF.
Abstract:
A method of fast link adaptation for Bluetooth long-range wireless networks is provided. A novel rate indication (RI) field is incorporated in a data packet to enable auto detection of rate adaptation at the receiver side. The data packet comprises a preamble, a first packet portion including the RI field, and a second packet portion including the PDU. The first packet portion is encoded with a first rate while the second packet portion is encoded with a second rate indicated by the RI field. The transmitting device raise/lower the encoding rate when the link quality is good/poor. The receiving device can provide recommended rate or link quality feedback information via an LMP message to help the transmitting device making rate adaptation decision. The transmitter can unilaterally decide the data rate for the second packet portion without receiver recommendation.
Abstract:
A wireless communicating method includes: performing one resource unit allocation upon a channel; and allocating a first resource unit and a second resource unit in said one resource unit allocation to a station, wherein the first resource unit is different from the second resource unit. By using the wireless communication method, throughput rate can be improved.