Abstract:
A dialysis authentication and management system comprising at least one dialysis component having at least one authentication component affixed thereon. The dialysis component can be any one of a dialyzer, sorbent cartridge, recharger or any other dialysis component. The authentication component can be selected from the group of a radio-frequency identification marker, a bar code, a one-wire security component, and a wireless authentication component. The authentication system can ensure that all components used are in proper usable condition and/or certified. The system can also manage the recharging of rechargeable components, and optionally manage dialysis therapy.
Abstract:
In examples described herein, a system includes an elongate member configured to be introduced into vasculature of a patient. The elongate member includes a pressure sensor configured to generate a pressure signal indicative of pressure in the vasculature adjacent the needle. The system includes processing circuitry configured to receive the pressure signal from the pressure sensor, detect, based on the pressure signal, dislodgment of the elongate member from the vasculature, and generate an output in response to detecting the dislodgment of the elongate member from the vasculature.
Abstract:
A dialysis authentication and management system comprising at least one dialysis component having at least one authentication component affixed thereon. The dialysis component can be any one of a dialyzer, sorbent cartridge, recharger or any other dialysis component. The authentication component can be selected from the group of a radio-frequency identification marker, a bar code, a one-wire security component, and a wireless authentication component. The authentication system can ensure that all components used are in proper usable condition and/or certified. The system can also manage the recharging of rechargeable components, and optionally manage dialysis therapy.
Abstract:
A medical system, device, and methods are provided having programming to communicate with a mobile device; the medical device further having programming to authenticate the mobile device; the medical device granting access to one or more functions if the mobile device is authenticated.
Abstract:
In examples described herein, a system includes an elongate member configured to be introduced into vasculature of a patient. The elongate member includes a pressure sensor configured to generate a pressure signal indicative of pressure in the vasculature adjacent the needle. The system includes processing circuitry configured to receive the pressure signal from the pressure sensor, detect, based on the pressure signal, dislodgment of the elongate member from the vasculature, and generate an output in response to detecting the dislodgment of the elongate member from the vasculature.
Abstract:
In some examples, a smart assistant device may receive information associated with a previous medical treatment provided to a patient by one or more medical devices. The smart assistant device may determine, based at least in part on the received information and a medical treatment plan for the patient, an adjustment to one or more parameters of an upcoming scheduled medical treatment provided by the one or more medical devices. The smart assistant device may program or otherwise control the one or more medical devices to make the adjustment to the one or more parameters of the upcoming scheduled medical treatment provided by the one or more medical devices.
Abstract:
In examples described herein, a system includes an elongate member configured to be introduced into vasculature of a patient. The elongate member includes a pressure sensor configured to generate a pressure signal indicative of pressure in the vasculature adjacent the needle. The system includes processing circuitry configured to receive the pressure signal from the pressure sensor, detect, based on the pressure signal, dislodgment of the elongate member from the vasculature, and generate an output in response to detecting the dislodgment of the elongate member from the vasculature.
Abstract:
In examples described herein, a system includes an elongate member configured to be introduced into vasculature of a patient. The elongate member includes a pressure sensor configured to generate a pressure signal indicative of pressure in the vasculature adjacent the needle. The system includes processing circuitry configured to receive the pressure signal from the pressure sensor, detect, based on the pressure signal, dislodgment of the elongate member from the vasculature, and generate an output in response to detecting the dislodgment of the elongate member from the vasculature.
Abstract:
A system and method for controlling a monitoring mode or treatment mode of an implantable medical device based on the detection of an external signal. The system and related method allow for more frequent monitoring of medical parameters at times where more frequent monitoring is necessary, such as during or after a dialysis session, with less frequent monitoring at other times, allowing for a more efficient medical device. The invention also allows for the frequency or mode of treatment by the implantable medical device, or the transmission of data from the implantable medical device to be controlled based on the external signal.
Abstract:
A system and method for controlling a monitoring mode or treatment mode of an implantable medical device based on the detection of an external signal. The system and related method allow for more frequent monitoring of medical parameters at times where more frequent monitoring is necessary, such as during or after a dialysis session, with less frequent monitoring at other times, allowing for a more efficient medical device. The invention also allows for the frequency or mode of treatment by the implantable medical device, or the transmission of data from the implantable medical device to be controlled based on the external signal.