Abstract:
This disclosure describes techniques for controlling spectral aggressors in a sensing device that uses a chopper amplifier to amplify an input signal prior to sampling the signal. In some examples, the techniques for controlling spectral aggressors may include generating a chopper-stabilized amplified version of an input signal based on a chopper frequency, sampling the chopper-stabilized amplified version of the input signal at a sampling rate to generate a sampled signal, and analyzing a target frequency band of the sampled signal. The chopper frequency and the sampling rate may cause spectral interference that is generated due to the chopper frequency to occur in the sampled signal at one or more frequencies that are outside of the target frequency band of the sampled signal. The techniques for controlling spectral aggressors may reduce the noise caused by the chopper frequency in the resulting sampled signal, thereby improving the quality of the signal.
Abstract:
Bioelectrical signals may be sensed within a brain of a patient with a plurality of sense electrode combinations. A stimulation electrode combination for delivering stimulation to the patient to manage a patient condition may be selected based on the frequency band characteristics of the sensed signals. In some examples, a stimulation electrode combination associated with the sense electrode combination that sensed a bioelectrical brain signal having a relatively highest relative beta band power level may be selected to deliver stimulation therapy to the patient. Other frequency bands characteristics may also be used to select the stimulation electrode combination.
Abstract:
This disclosure describes techniques for controlling spectral aggressors in a sensing device that uses a chopper amplifier to amplify an input signal prior to sampling the signal. In some examples, the techniques for controlling spectral aggressors may include generating a chopper-stabilized amplified version of an input signal based on a chopper frequency, sampling the chopper-stabilized amplified version of the input signal at a sampling rate to generate a sampled signal, and analyzing a target frequency band of the sampled signal. The chopper frequency and the sampling rate may cause spectral interference that is generated due to the chopper frequency to occur in the sampled signal at one or more frequencies that are outside of the target frequency band of the sampled signal. The techniques for controlling spectral aggressors may reduce the noise caused by the chopper frequency in the resulting sampled signal, thereby improving the quality of the signal.
Abstract:
Bioelectrical signals may be sensed within a brain of a patient with a plurality of sense electrode combinations. A stimulation electrode combination for delivering stimulation to the patient to manage a patient condition may be selected based on the frequency band characteristics of the sensed signals. In some examples, a stimulation electrode combination associated with the sense electrode combination that sensed a bioelectrical brain signal having a relatively highest relative beta band power level may be selected to deliver stimulation therapy to the patient. Other frequency bands characteristics may also be used to select the stimulation electrode combination.
Abstract:
This disclosure describes techniques for controlling spectral aggressors in a sensing device that uses a low power sleep mode to manage the power consumed by the device. In some examples, the techniques for controlling spectral aggressors may include configuring one or more of an algorithm processing rate for a processor, a buffering rate for the processor, a sampling rate for an analog-to-digital converter, an execution unit processing rate for the processor, and an algorithm subdivision factor for the processor such that spectral interference caused by a sleep cycle rate of the processor occurs outside of one or more target frequency bands of a sampled signal. The techniques of this disclosure may be used to reduce noise in a sensing system that uses a low power sleep mode to manage the power consumed by the device.
Abstract:
Bioelectrical signals may be sensed within a brain of a patient with a plurality of sense electrode combinations. A stimulation electrode combination for delivering stimulation to the patient to manage a patient condition may be selected based on the frequency band characteristics of the sensed signals. In some examples, a stimulation electrode combination associated with the sense electrode combination that sensed a bioelectrical brain signal having a relatively highest relative beta band power level may be selected to deliver stimulation therapy to the patient. Other frequency bands characteristics may also be used to select the stimulation electrode combination.
Abstract:
Bioelectrical signals may be sensed within a brain of a patient with a plurality of sense electrode combinations. A stimulation electrode combination for delivering stimulation to the patient to manage a patient condition may be selected based on the frequency band characteristics of the sensed signals. In some examples, a stimulation electrode combination associated with the sense electrode combination that sensed a bioelectrical brain signal having a relatively highest relative beta band power level may be selected to deliver stimulation therapy to the patient. Other frequency bands characteristics may also be used to select the stimulation electrode combination.
Abstract:
This disclosure describes techniques for controlling spectral aggressors in a sensing device that uses a low power sleep mode to manage the power consumed by the device. In some examples, the techniques for controlling spectral aggressors may include configuring one or more of an algorithm processing rate for a processor, a buffering rate for the processor, a sampling rate for an analog-to-digital converter, an execution unit processing rate for the processor, and an algorithm subdivision factor for the processor such that spectral interference caused by a sleep cycle rate of the processor occurs outside of one or more target frequency bands of a sampled signal. The techniques of this disclosure may be used to reduce noise in a sensing system that uses a low power sleep mode to manage the power consumed by the device.
Abstract:
Bioelectrical signals may be sensed within a brain of a patient with a plurality of sense electrode combinations. A stimulation electrode combination for delivering stimulation to the patient to manage a patient condition may be selected based on the frequency band characteristics of the sensed signals. In some examples, a stimulation electrode combination associated with the sense electrode combination that sensed a bioelectrical brain signal having a relatively highest relative beta band power level may be selected to deliver stimulation therapy to the patient. Other frequency bands characteristics may also be used to select the stimulation electrode combination.
Abstract:
Bioelectrical signals may be sensed within a brain of a patient with a plurality of sense electrode combinations. A stimulation electrode combination for delivering stimulation to the patient to manage a patient condition may be selected based on the frequency band characteristics of the sensed signals. In some examples, a stimulation electrode combination associated with the sense electrode combination that sensed a bioelectrical brain signal having a relatively highest relative beta band power level may be selected to deliver stimulation therapy to the patient. Other frequency bands characteristics may also be used to select the stimulation electrode combination.