Abstract:
A physiological characteristic sensor, a method for forming a physiological characteristic sensor, and a method for forming a platinum deposit having a rough surface are presented here. The method for forming a physiological characteristic sensor includes immersing a sensor electrode in a platinum electrolytic bath. Further, the method includes performing an electrodeposition process by sequentially applying a pulsed signal to the sensor electrode and applying a non-pulsed continuous signal to the sensor electrode to form a platinum deposit on the sensor electrode.
Abstract:
The invention disclosed herein includes sensors having three dimensional configurations that allow expansive “360°” sensing (i.e. sensing analyte from multiple directions) in the environments in which such sensors are disposed. Embodiments of the invention provide analyte sensors having foldable substrates adapted to produce optimized configurations of electrode elements as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
Abstract:
A sensor set is provided for sensing of a body characteristic, such as glucose. The sensor set includes a mounting base for the sensor including a shim adapted to prevent pull up of the sensor and a connector to connect to the mounting base and has an improved structure for connecting the mounting base to the connector. The connector may contain sensor electronics for wired or wireless communication to an external monitor or display. The mounting base includes latch arms and the connector adapted to fit and lock into latch recesses on the connector and includes anti-rotation arms adapted to fit into anti-rotation arm recesses on the connector.
Abstract:
A sensor set is provided for sensing of a body characteristic, such as glucose. The sensor set includes a mounting base for the sensor including a shim adapted to prevent pull up of the sensor and a connector to connect to the mounting base and has an improved structure for connecting the mounting base to the connector. The connector may contain sensor electronics for wired or wireless communication to an external monitor or display. The mounting base includes latch arms and the connector adapted to fit and lock into latch recesses on the connector and includes anti-rotation arms adapted to fit into anti-rotation arm recesses on the connector.
Abstract:
A sensor set is provided for sensing of a body characteristic, such as glucose. The sensor set includes a mounting base for the sensor and a connector to connect to the mounting base and has an improved structure for connecting the mounting base to the connector. The connector may contain sensor electronics for wired or wireless communication to an external monitor or display. The mounting base includes latch arms and the connector adapted to fit and lock into latch recesses on the connector and includes anti-rotation arms adapted to fit into anti-rotation arm recesses on the connector.
Abstract:
The invention disclosed herein includes sensors having three dimensional configurations that allow expansive “360°” sensing (i.e. sensing analyte from multiple directions) in the environments in which such sensors are disposed. Embodiments of the invention provide analyte sensors having foldable substrates adapted to produce optimized configurations of electrode elements as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
Abstract:
The invention disclosed herein includes sensors having three dimensional configurations that allow expansive “360°” sensing (i.e. sensing analyte from multiple directions) in the environments in which such sensors are disposed. Embodiments of the invention provide analyte sensors having foldable substrates adapted to produce optimized configurations of electrode elements as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
Abstract:
The invention disclosed herein includes sensors having three dimensional configurations that allow expansive “360°” sensing (i.e. sensing analyte from multiple directions) in the environments in which such sensors are disposed. Embodiments of the invention provide analyte sensors having foldable substrates adapted to produce optimized configurations of electrode elements as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
Abstract:
A physiological characteristic sensor, a method for forming a physiological characteristic sensor, and a method for forming a platinum deposit having a rough surface are presented here. The method for forming a physiological characteristic sensor includes immersing a sensor electrode in a platinum electrolytic bath. Further, the method includes performing an electrodeposition process by sequentially applying a pulsed signal to the sensor electrode, wherein the pulsed signal includes a repeated cycle of a first current and a second current different from the first current, and applying a non-pulsed continuous signal to the sensor electrode, wherein the non-pulsed continuous signal includes a non-repeated application of a third current, to form a platinum deposit on the sensor electrode.
Abstract:
A sensor set is provided for sensing of a body characteristic, such as glucose. The sensor set includes a mounting base for the sensor and a connector to connect to the mounting base and has an improved structure for connecting the mounting base to the connector. The connector may contain sensor electronics for wired or wireless communication to an external monitor or display. The mounting base includes latch arms and the connector adapted to fit and lock into latch recesses on the connector and includes anti-rotation arms adapted to fit into anti-rotation arm recesses on the connector.