摘要:
Systems and methods are provided for applying a high frequency voltage in the presence of an electrically conductive fluid to create a relatively low-temperature plasma for ablation of tissue adjacent to, or in contact with, the plasma. In one embodiment, an electrosurgical probe or catheter is positioned adjacent the target site so that one or more active electrode(s) are brought into contact with, or close proximity to, a target tissue in the presence of electrically conductive fluid. High frequency voltage is then applied between the electrode terminal(s) and one or more return electrode(s) to generate a plasma adjacent to the active electrode(s), and to volumetrically remove or ablate at least a portion of the target tissue. The high frequency voltage generates electric fields around the active electrode(s) with sufficient energy to ionize the conductive fluid adjacent to the active electrode(s). Within the ionized gas or plasma, free electrons are accelerated, and electron-atoms collisions liberate more electrons, and the process cascades until the plasma contains sufficient energy to break apart the tissue molecules, causing molecular dissociation and ablation of the target tissue.
摘要:
Systems and methods are provided for applying a high frequency voltage in the presence of an electrically conductive fluid to create a relatively low-temperature plasma for ablation of tissue adjacent to, or in contact with, the plasma. In one embodiment, an electrosurgical probe or catheter is positioned adjacent the target site so that one or more active electrode(s) are brought into contact with, or close proximity to, a target tissue in the presence of electrically conductive fluid. High frequency voltage is then applied between the electrode terminal(s) and one or more return electrode(s) to generate a plasma adjacent to the active electrode(s), and to volumetrically remove or ablate at least a portion of the target tissue. The high frequency voltage generates electric fields around the active electrode(s) with sufficient energy to ionize the conductive fluid adjacent to the active electrode(s). Within the ionized gas or plasma, free electrons are accelerated, and electron-atoms collisions liberate more electrons, and the process cascades until the plasma contains sufficient energy to break apart the tissue molecules, causing molecular dissociation and ablation of the target tissue.
摘要:
Systems and methods are provided for removing adipose or fatty tissue underlying a patient's epidermis is disclosed (e.g., liposuction, abdominoplasty, and the like). The method includes positioning one or more active electrode(s) and one or more return electrode(s) in close proximity to a target region of fatty tissue. A high frequency voltage difference is applied between the active and return electrodes, and the fatty tissue or fragments of the fatty tissue are aspirated from the target region. The high frequency voltage either softens the fatty tissue or completely removes at least a portion of the tissue. In both embodiments, the remaining fatty tissue is more readily detached from the adjacent tissue in the absence of energy, and less mechanical force is required for removal. The bipolar configuration of the present invention controls the flow of current to the immediate region around the distal end of the probe, which minimizes tissue necrosis and the conduction of current through the patient. The residual heat from the electrical energy also provides simultaneous hemostasis of severed blood vessels, which increases visualization and improves recovery time for the patient. The techniques of the present invention produce significantly less thermal energy than many conventional techniques, such as lasers and conventional RF devices, which reduces collateral tissue damage and minimizes pain and postoperative scarring.
摘要:
Systems and methods are provided for removing adipose or fatty tissue underlying a patient's epidermis is disclosed (e.g., liposuction, abdominoplasty, and the like). The method includes positioning one or more active electrode(s) and one or more return electrode(s) in close proximity to a target region of fatty tissue. A high frequency voltage difference is applied between the active and return electrodes, and the fatty tissue or fragments of the fatty tissue are aspirated from the target region. The high frequency voltage either softens the fatty tissue or completely removes at least a portion of the tissue. In both embodiments, the remaining fatty tissue is more readily detached from the adjacent tissue in the absence of energy, and less mechanical force is required for removal. The bipolar configuration of the present invention controls the flow of current to the immediate region around the distal end of the probe, which minimizes tissue necrosis and the conduction of current through the patient. The residual heat from the electrical energy also provides simultaneous hemostasis of severed blood vessels, which increases visualization and improves recovery time for the patient. The techniques of the present invention produce significantly less thermal energy than many conventional techniques, such as lasers and conventional RF devices, which reduces collateral tissue damage and minimizes pain and postoperative scarring.
摘要:
The present invention provides systems, apparatus and methods for removing the outer layer, or stratum corneum, of a patient's skin. In one aspect of the invention, a method includes positioning an active electrode adjacent to or near a target site on a patient's outer skin, and applying a sufficient high frequency voltage to the active electrode to remove the stratum corneum without removing the entire epidermis layer. In this manner, the present invention removes dead and/or damaged skin cells on the surface of the skin which improves the overall appearance of the skin. In addition, this process helps to stimulate the bodies own rejuvenation process. In some embodiments, this rejuvenation process occurs by the actual removal of the stratum corneum, which accelerates the regrowth of new cell layers in the skin. In other embodiments, thermal energy is applied to the underlying epidermis and/or dermis to stimulate the growth of new collagen. In both of these embodiments, the skin appears healthier and, in some cases, small wrinkles are removed or reduced.
摘要:
Systems and methods are provided for removing fatty tissue underlying a patient's epidermis (e.g., blepharoplasty, brow lifts, eyelid shortening procedures, and the like). These methods include positioning one or more active electrode(s) and one or more return electrode(s) in close proximity to a target site on an external body surface of the patient. A high frequency voltage difference is applied between the active and return electrode(s), and the active electrode(s) are translated across the external body surface to create an incision therein. The bipolar configuration controls the flow of current to within and around the distal end of the probe, which minimizes tissue necrosis and the conduction of current through unwanted paths in the patient. The residual heat from the electrical energy also provides simultaneous hemostasis of severed blood vessels, which increases visualization and improves recovery time for the patient.
摘要:
Systems and methods are provided for removing fatty tissue underlying a patient's epidermis (e.g., blepharoplasty, brow lifts, eyelid shortening procedures, and the like). These methods include positioning one or more active electrode(s) and one or more return electrode(s) in close proximity to a target site on an external body surface of the patient. A high frequency voltage difference is applied between the active and return electrode(s), and the active electrode(s) are translated across the external body surface to create an incision therein. The bipolar configuration controls the flow of current to within and around the distal end of the probe, which minimizes tissue necrosis and the conduction of current through unwanted paths in the patient. The residual heat from the electrical energy also provides simultaneous hemostasis of severed blood vessels, which increases visualization and improves recovery time for the patient.
摘要:
Systems and methods are provided for applying a high frequency voltage in the presence of an electrically conductive fluid to create a relatively low-temperature plasma for ablation of tissue adjacent to, or in contact with, the plasma. In one embodiment, an electrosurgical probe or catheter is positioned adjacent the target site so that one or more active electrode(s) are brought into contact with, or close proximity to, a target tissue in the presence of electrically conductive fluid. High frequency voltage is then applied between the active electrode(s) and one or more return electrode(s) to non-thermally generate a plasma adjacent to the active electrode(s), and to volumetrically remove or ablate at least a portion of the target tissue. The high frequency voltage generates electric fields around the active electrode(s) with sufficient energy to ionize the conductive fluid adjacent to the active electrode(s). Within the ionized gas or plasma, free electrons are accelerated, and electron-atoms collisions liberate more electrons, and the process cascades until the plasma contains sufficient energy to break apart the tissue molecules, causing molecular dissociation and ablation of the target tissue.
摘要:
Systems, apparatus, and methods are provided for promoting blood flow to a target tissue. In one variation, the invention involves creating a pattern of voids in connective tissue, or through a tissue having sparse vascularity, such as a tendon or a meniscus, in order to increase blood flow within the tissue. This also includes using a template device to assist in the creation of the pattern of voids. Also included is an electrosurgical device with a self-contained fluid supply for providing conductive fluid to the target tissue or to active electrodes of the device.
摘要:
Systems and methods are provided for selectively applying electrical energy to a target location on an external body surface, such as skin tissue removal and/or collagen shrinkage in the epidermis or dermis, e.g., the removal of pigmentations, vascular lesions (e.g., leg veins), scars, tattoos, etc., and for other surgical procedures on the skin, such as tissue rejuvenation, cosmetic surgery, wrinkle removal, hair removal and/or transplant procedures. The present invention applies high frequency (RF) electrical energy to one or more electrode terminals adjacent an external body surface, such as the outer surface of the skin, to remove and/or modify the structure of tissue structures within the skin. Depending on the specific cosmetic procedure, the present invention may be used to: (1) volumetrically remove tissue or hair (i.e., ablate or effect molecular dissociation of the tissue structure); (2) separate a tissue layer from an underlying tissue layer so that the tissue layer can be removed; (3) shrink or contract collagen connective tissue; and/or (4) coagulate blood vessels underlying the surface of the skin.