摘要:
A neurostimulation system for management of stimulation safety limits. The system determines a tissue charge injection metric at each electrode, compares the metric to the hard stop charge limit, and prevents the neurostimulator from delivering stimulation energy to the tissue region in accordance based on the comparison. The hard stop limit may be user-programmable or may be automatically modified in response to detection of electrode characteristics. The system may quantitatively notify a user of a value of the injected charge injected into the tissue. The electrodes may be organized into different sets, in which case, the system may directly control tissue charge independently at each of the electrode sets. If current steering is provided, the system may displace the electrical stimulation energy along the tissue region in one direction, while preventing the charge injection value at each of the electrodes from meeting or exceeding the hard stop charge limit.
摘要:
A neurostimulation system for management of stimulation safety limits. The system determines a tissue charge injection metric at each electrode, compares the metric to the hard stop charge limit, and prevents the neurostimulator from delivering stimulation energy to the tissue region in accordance based on the comparison. The hard stop limit may be user-programmable or may be automatically modified in response to detection of electrode characteristics. The system may quantitatively notify a user of a value of the injected charge injected into the tissue. The electrodes may be organized into different sets, in which case, the system may directly control tissue charge independently at each of the electrode sets. If current steering is provided, the system may displace the electrical stimulation energy along the tissue region in one direction, while preventing the charge injection value at each of the electrodes from meeting or exceeding the hard stop charge limit.
摘要:
A method and neurostimulation system of providing therapy to a patient is provided. At least one electrode is placed in contact with tissue of a patient. A sub-threshold, hyperpolarizing, conditioning pre-pulse (e.g., an anodic pulse) is conveyed from the electrode(s) to render a first region of the tissue (e.g., dorsal root fibers) less excitable to stimulation, and a depolarizing stimulation pulse (e.g., a cathodic pulse) is conveyed from the electrode(s) to stimulate a second different region of the tissue (e.g., dorsal column fibers). The conditioning pre-pulse has a relatively short duration (e.g., less than 200 μs).
摘要:
A device for brain stimulation includes a lead having a longitudinal surface, a proximal end, a distal end and a lead body. The device also includes a plurality of electrodes disposed along the longitudinal surface of the lead near the distal end of the lead. The plurality of electrodes includes a first set of segmented electrodes comprising at least two segmented electrodes disposed around a circumference of the lead at a first longitudinal position along the lead; and a second set of segmented electrodes comprising at least two segmented electrodes disposed around a circumference of the lead at a second longitudinal position along the lead. The device further includes one or more conductors that electrically couple together all of the segmented electrodes of the first set of segmented electrodes.
摘要:
A method and neurostimulation system of providing therapy to a patient is provided. At least one electrode is place in contact with tissue of a patient. A sub-threshold, hyperpolarizing, conditioning pre-pulse (e.g., an anodic pulse) is conveyed from the electrode(s) to render a first region of the tissue (e.g., dorsal root fibers) less excitable to stimulation, and a depolarizing stimulation pulse (e.g., a cathodic pulse) is conveyed from the electrode(s) to stimulate a second different region of the tissue (e.g., dorsal column fibers). The conditioning pre-pulse has a relatively short duration (e.g., less than 200 μs).
摘要:
A system and method for locating an implantable tissue stimulation lead within a patient. A measurement indicative of a coupling efficiency between the tissue stimulation lead and tissue at a location is taken. The location of the tissue stimulation lead relative to the tissue is tracked. Coupling efficiency information based on the measurement from the monitoring device is generated, tracking information based on the tissue stimulation lead location is generated, and the coupling efficiency information and tracking information is concurrently conveyed to the user.
摘要:
An implantable medical device system, external programmer, and method of indicating the status of a power source in a medical device implanted within a patient. An actual status of the power source is maintained at the medical device. A status indicator of an external programmer indicates an estimated status of the power source, which can be reconciled with the actual status of the power source when the external programmer is placed in telecommunicative contact with the implantable medical device.
摘要:
An implantable pulse generator includes a current steering capability that allows a clinician or patient to quickly determine a desired electrode stimulation pattern, including which electrodes of a group of electrodes within an electrode array should receive a stimulation current, including the amplitude, width and pulse repetition rate of such current. Movement of the selected group of electrodes is facilitated through the use of remotely generated directional signals, generated by a pointing device, such as a joystick. As movement of the selected group of electrodes occurs, current redistribution amongst the various electrode contacts takes place. The redistribution of stimulus amplitudes utilizes re-normalization of amplitudes so that the perceptual level remains fairly constant. This prevents the resulting paresthesia from falling below the perceptual threshold or above the comfort threshold.
摘要:
Disclosed herein is a current generation architecture for an implantable stimulator device such as an Implantable Pulse Generator (IPG). Current source and sink circuitry are both divided into coarse and fine portions, which respectively can provide a coarse and fine current resolution to a specified electrode on the IPG. The coarse portion is distributed across all of the electrodes and so can source or sink current to any of the electrodes. The coarse portion is divided into a plurality of stages, each of which is capable via an associated switch bank of sourcing or sinking a coarse amount of current to or from any one of the electrodes on the device. The fine portion of the current generation circuit preferably includes source and sink circuitry dedicated to each of the electrode on the device, which can comprise digital-to-analog current converters (DACs). The DACs also receives the above-noted reference current, which is amplified by the DACs in fine increments by appropriate selection of fine current control signals. When the coarse and fine current control circuitry are used in tandem, ample current with a fine current resolution can be achieved at any electrode and in a space- and power-efficient manner.
摘要:
A method and neurostimulation system for treating a patient are provided. A plurality of pulsed electrical waveforms are respectively delivered within a plurality of timing channels of the neurostimulation system, thereby treating the patient. Sets of stimulation pulses within the electrical waveforms that will potentially overlap temporally are predicted. Each of the potentially overlapping pulse sets is substituted with a replacement stimulation pulse, such that each replacement stimulation pulse is delivered within at least one of the respective timing channels, thereby preventing temporal overlap between the stimulation pulses of the respective electrical waveforms while preventing frequency locking between the timing channels.