摘要:
A fabrication method includes forming a spin-polarizing layer, a spin transport layer on the spin polarizing layer on a substrate, a free layer magnet on the spin transport layer, a non-magnetic layer on the spin polarizing layer, a reference layer on the non-magnetic layer, and a hard mask layer on the reference layer, etching the hard mask layer and forming a read portion including the reference layer, the nonmagnetic layer and the free layer magnet, forming a nonlinear resistor layer on surfaces of the spin transport layer, the spacers, and the hard mask layer, etching the nonlinear resistor layer, the spin transport layer, and the spin polarizing layer and forming a write portion including the spin transport layer and the spin polarizing layer, forming an interlevel dielectric layer, forming a trench, exposing an upper surface of the reference layer of the read and write portions.
摘要:
A fabrication method includes forming a spin-polarizing layer, a spin transport layer on the spin polarizing layer on a substrate, a free layer magnet on the spin transport layer, a non-magnetic layer on the spin polarizing layer, a reference layer on the non-magnetic layer, and a hard mask layer on the reference layer, etching the hard mask layer and forming a read portion including the reference layer, the nonmagnetic layer and the free layer magnet, forming a nonlinear resistor layer on surfaces of the spin transport layer, the spacers, and the hard mask layer, etching the nonlinear resistor layer, the spin transport layer, and the spin polarizing layer and forming a write portion including the spin transport layer and the spin polarizing layer, forming an interlevel dielectric layer, forming a trench, exposing an upper surface of the reference layer of the read and write portions.
摘要:
A spin-torque based memory device includes a write portion including a fixed ferromagnetic spin-polarizing layer, a spin-transport layer having a spin accumulation region formed above the fixed ferromagnetic spin-polarizing layer. The memory device further includes a read portion in electrical contact with the spin-transport layer. The read portion includes a free layer magnet, a read non-magnetic layer, and a reference layer. The memory device further includes a metal contact region formed overlying the read portion and a nonlinear resistor formed between an upper surface of the spin transport layer and the metal contact region and modulating write and read current paths depending on an applied voltage, thereby creating different current paths for write and read processes.
摘要:
A spin-torque based memory device includes a write portion including a fixed ferromagnetic spin-polarizing layer, a spin-transport layer having a spin accumulation region formed above the fixed ferromagnetic spin-polarizing layer. The memory device further includes a read portion in electrical contact with the spin-transport layer. The read portion includes a free layer magnet, a read non-magnetic layer, and a reference layer. The memory device further includes a metal contact region formed overlying the read portion and a nonlinear resistor formed between an upper surface of the spin transport layer and the metal contact region and modulating write and read current paths depending on an applied voltage, thereby creating different current paths for write and read processes.
摘要:
Embodiments are directed to STT MRAM devices. One embodiment of an STT MRAM device includes a reference layer, a tunnel barrier layer, a free layer and one or more conductive vias. The reference layer is configured to have a fixed magnetic moment. In addition, the tunnel barrier layer is configured to enable electrons to tunnel between the reference layer and the free layer through the tunnel barrier layer. The free layer is disposed beneath the tunnel barrier layer and is configured to have an adaptable magnetic moment for the storage of data. The conductive via is disposed beneath the free layer and is connected to an electrode. Further, the conductive via has a width that is smaller than a width of the free layer such that a width of an active STT area for the storage of data in the free layer is defined by the width of the conductive via.
摘要:
A method for fabricating a synthetic antiferromagnetic device, includes depositing a magnesium oxide spacer layer on a reference layer having a first and second ruthenium layer, depositing a cobalt iron boron layer on the magnesium oxide spacer layer; and depositing a third ruthenium layer on the cobalt iron boron layer, the third ruthenium layer having a thickness of approximately 0-18 angstroms.
摘要:
A synthetic antiferromagnetic device includes a reference layer having a first and second ruthenium layer, a magnesium oxide spacer layer disposed on the reference layer, a cobalt iron boron layer disposed on the magnesium oxide spacer layer and a third ruthenium layer disposed on the cobalt iron boron layer, the third ruthenium layer having a thickness of approximately 0 angstroms to 18 angstroms.
摘要:
A method for fabricating a synthetic antiferromagnetic device, includes depositing a magnesium oxide spacer layer on a reference layer having a first and second ruthenium layer, depositing a cobalt iron boron layer on the magnesium oxide spacer layer; and depositing a third ruthenium layer on the cobalt iron boron layer, the third ruthenium layer having a thickness of approximately 0-18 angstroms.
摘要:
A synthetic antiferromagnetic device includes a reference layer having a first and second ruthenium layer, a magnesium oxide spacer layer disposed on the reference layer, a cobalt iron boron layer disposed on the magnesium oxide spacer layer and a third ruthenium layer disposed on the cobalt iron boron layer, the third ruthenium layer having a thickness of approximately 0 angstroms to 18 angstroms.
摘要:
A magnetic tunnel junction (MTJ) for a magnetic random access memory (MRAM) includes a magnetic free layer having a variable magnetization direction; an iron (Fe) dusting layer formed on the free layer; an insulating tunnel barrier formed on the dusting layer; and a magnetic fixed layer having an invariable magnetization direction, disposed adjacent the tunnel barrier such that the tunnel barrier is located between the free layer and the fixed layer; wherein the free layer and the fixed layer have perpendicular magnetic anisotropy and are magnetically coupled through the tunnel barrier.